La energía renovable - factor clave para la descarbonización de las economías **FISE-CIGRE CONFERENCE 2021** 18 de noviembre de 2021 # Hacia sistemas energéticos más sostenibles y resilientes # El papel de las energías renovables en las Contribuciones Nacionales Determinadas (NDCs) - Renewables are essential to achieve the Paris Agreement goals - 141 parties (74% of total) have set out quantified renewable power targets in their NDCs - 63 parties (33% of total) have set out quantified renewable energy targets for direct heat and/or transport in their NDCs # El camino a seguir # Seis pilares para la descarbonización # Diferentes escenarios convergen – renovables en el corazón del sector #### Emerging consensus on the role of renewables Shares of renewables in total primary energy in 2018 and 2050 in various energy scenarios ## Tendencia actual en mercados financieros Inversionistas y mercados financieros están reaccionando a la transición energética # Crecimiento económico y empleo Figure 1. Global renewable energy employment by technology, 2012-20 a Includes liquid biofuels, solid biomass and biogas. b Direct jobs only. c "Others" includes geothermal energy, concentrated solar power, heat pumps (ground based), municipal and industrial waste, and ocean energy. # Tres tendencias innovadoras a nivel global Electrification of end-use sectors is an emerging solution to maintain value and avoid curtailment of VRE, and help decarbonize other sectors # Competitividad de las energías renovables # 2020 – año récord para la electricidad renovable a pesar de la pandemia ## 2 799 GW Global renewable generation capacity at the end of 2020 10.3% Growth in renewable capacity during 2020 261 GW Net increase in global renewable generation capacity in 2020 64% Share of new renewable capacity installed in Asia in 2020 91% Wind and solar share of new capacity in 2020 82% Share of renewables in net capacity expansion in 2020 # Electricidad será el Rey de los vectores energéticos # Diferentes escenarios convergen – electricidad es el vector energético del futuro #### Global energy-related CO₂ emissions in 2050 CO₂ emissions versus electrification rates in various energy scenarios # Energías renovables variables (solar FV y eólica) en el corazón de la transición ## Shares in the generation mix | Wind and Solar penetration | | |----------------------------|------------| | Denmark | 65% | | Kenya
Nicaragua | 48%
44% | ## Necesitamos sistemas eléctricos mas flexibles # Flexibility providers in tomorrow's system: Flexible generation, Regional markets, Demand response, Storage, Power-to-X. # Innovación tiene la llave a una electrificación inteligente ## El reto de la electrificación de los sectores de la demanda Electricity consumption by sector, 2018, 2030 and 2050 (TWh/yr) in the 1.5°C Scenario #### **Key considerations** - 1- Annual Energy demand:must come from renewablespower system flexibility - 2- **Load profile**: peak demand **infrastructure** - 3- **Investments** in infrastructure for electrification in the same order of magnitude as RE capacity: ~ 900 billion USD/year - Smart electrification is the only option Source: https://www.irena.org/publications/2021/March/World-Energy-Transitions-Outlook # Innovación para electrificación inteligente – el caso de California #### **Technology & infrastructure** #### EV: 420.000 full EVs on road #### Diversity and ubiquity of charging infrastructure - 57,000 Level 2 + 4,900 DC fast (public chargers) - 240,000 Level 2 + 10,000 DC fast (2025) - lithium-ion batteries - ReCell Center: first advanced battery recycling R&D center #### **Digitalization** Interoperability and connectivity: BMW piloting the Chargeforward System Architecture ## Cooperation of regulatory agencies for VGI #### **Management of EV load to integrate renewables** BMW Chargeforward takes into account renewables: shifting charging during the late morning hours can help with oversupply of solar generation. #### Management of EV load to defer grid updates PG&E is purchasing distribution capacity for either generation or load (Evs can participate) #### EV as a resiliency solution • EV battery and solar as backup systems for wildfires and blackouts ## System operation & planning ## Market design & regulations ## • Grid co #### **V2G** regulatory framework - Grid codes enables V2G charging: The new Rule 21 revisions clarify that V2G-DC or V2G-AC systems can be interconnected - Recommendation to Allow V1G and V2G to qualify for SGIP, but V1G would get less incentive compared to V2G based on permanent load shift logic #### Smart charging enablement by wholesale market constructs V2G company Nuvve participating in California's wholesale energy markets to help balance the grid California #### Time of Use Tariffs for EVs (US\$/kWh) Daily Peak at 0.5 (4 - 9 p.m.), Partial Peak at 0.3 (3 - 4 p.m. and 9 p.m. - 12 a.m.) and Off-Peak at 0.15 (all other hours) #### **EV load peak shaving** • ChargeForward vehicles can create an average of \$325 in estimated grid savings annually per vehicle in California #### **Battery second life** California Awards \$10.8M to Reuse EV Batteries in Solar & Microgrid Projects (4 projects) #### **Charging stations ownership and operations** Four community choice aggregators (CCAs) are funding \$65 million in infrastructure to support the rising number of electric vehicles (EVs) in the state. **Business** models # Tres tendencias innovadoras a nivel global The increasing deployment of Distributed Energy Resources (DERs) turns the consumer into an active participant, fostering demand-side management. # Descentralización - prosumidores The new consumer is also producing, storing, trading energy and managing own load # Modelos de negocio innovadores: Agregadores | Description | Value | |--|--| | Virtual power plant (VPP) global market value | USD 762 million in 2016; expected to reach USD 4 597 million in 2023 (compound annual growth rate of 25.9% from 2017 to 2023) (Research and Markets, 2018) | | Countries with established regulatory
frameworks allowing VPP trading | Australia, Austria, Belgium, Germany, Denmark, France, Netherlands, UK, US, etc. | | Services provided by aggregators | Forecasting and trading of distributed energy resources Optimised dispatching of distributed energy resources according to intraday pricing on spot markets Delivery of ancillary services to transmission (and potentially distribution) system operators | In South Australia, aggregators can meet 20% of daily power demand and provide 30% savings on energy bills. Source: IRENA (2019) Innovation landscape brief: Aggregators # Modelos de negocio: comercialización de electricidad entre pares #### **Traditional trading model** # Resident with solar Resident with solar Resident with solar Resident with solar Resident with rooftop solar and EV Source: Adapted from Liu et al., 2019 #### Peer to peer electricity trading model Global electricity generated by distributed PV in 2019 ~ 350 TWh # 2key enabling factors Distributed renewable energy resources Digitalisation Conducive regulatory framework ## **SNAPSHOT** - → Australia, Bangladesh, Colombia, Germany, Japan, Malaysia, the Netherlands, the UK, the US and others have started trial P2P schemes. - → Many pilot projects used blockchain technology. Many pilot project blockchain technol Conducive regulatory framework # Tres tendencias innovadoras a nivel global Digital technologies enable faster response, better management of assets, connecting devices, collecting data, monitor and control # Descentralización requiere digitalización # Tecnología inteligente debe resultar en soluciones inteligentes para el sector eléctrico Decentralisation can be a source of flexibility for power systems, but... ...Smart technologies need to be used in a smart way*. # Consider both - user and system needs: - Maintain or improve services to users at same or lower cost - Promote users behaviour that alleviate instead of stressing more the system - Observe market principles, consumer rights, the cost sharing principles applied to energy grids - Appropriate electrify tariff structure adequate grid charges if exchanges are carried out using the public infrastructure *Value in demonstration projects and regulatory sandboxes # Gracias www.irena.org www.twitter.com/irena www.facebook.com/irena.org www.instagram.com/irenaimages www.flickr.com/photos/irenaimages www.youtube.com/user/irenaorg # Escenario 1.5oC – el papel de los combustibles fósiles declina #### Fossil fuels primary supply (EJ) Fossil fuel use could decline by more than 75% by 2050, based on the rapid transition measures starting now. # Consumidores en el corazón de la transición energética The new consumer is also producing, storing, trading energy and managing own load