Paris Session 2022

Opportunities for Solid State Transformers

A2 - PS2: Q6

What prospects are there for development and use of electronic or solidstate transformers? Marko Mogorovic, Switzerland

> HITACHI Inspire the Next

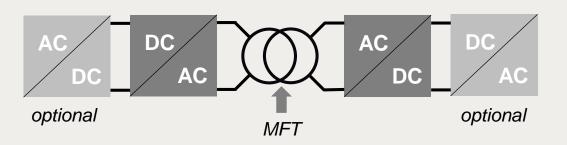
Group Discussion Meeting

© CIGRE 2022

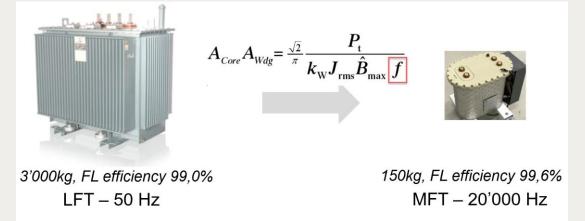
Hitachi Energy

1

SST Introduction


What is an SST?

A modular converter based on MFTs, able to provide:


- xC-xC conversion with galvanic insulation
- Fully controllable power (phase and voltage in AC)
- It can provide a MV/LV conversion

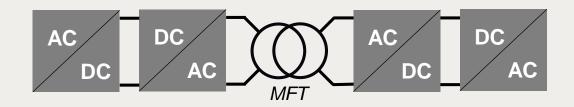
What are the benefits of SSTs?

- Key enabler of DC/DC power conversion at MV level
- Enable DC link between DC sources, loads and storage
- Reduced transformer size due to high frequency (~kHz)

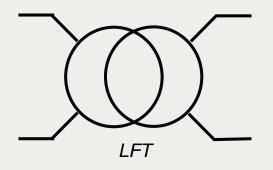
SST cell – several cells can be connected in series to reach MV

CIGRE Centennial Sessior 2022

AC-AC Conversion


SST vs. Standard Solution

- Compatible with existing MV AC infrastructure
- Provides full controllability: power, phase and voltage
- With 5 conversion stages, it is difficult to beat a single stage low-frequency transformer in terms of cost & efficiency
- Possible weight decrease is not the most important KPI in utility applications
- An interesting compromise is the «Hybrid transformer» for the AC/AC applications [1]


Conclusion

 AC-AC MV applications are unlikely to drive the SST development

Principal schematic of AC-AC SST

MV line frequency distribution transformer (LFT)

CIGRE Centennial Sessior 2022

[1] J W. Kolar, J. E. Huber, "<u>Next-Generation Datacenter MV Interfaces - Will Solid-</u> <u>State Transformers Meet Their Waterloo?</u>", Ind. session presentation, APEC 2022

© CIGRE 2022

AC-AC Conversion

SST vs. Standard Solution

- 3-phase AC grids
- Many voltage levels: 3.3, 4.16, 6, 11, 15, 20kV...
- Grid frequency: 50Hz or 60Hz
- Sub-station installations
 - Weight / footprint reduction not that relevant
- Reliability very complex due to 3-phases
- Efficiency hard to beat distribution LFT
- Control improved compared to existing solutions
- Higher cost

MV AC SST Substation

GE's 13.8kV to 465/√3V,60Hz, 1MVA SiC SST (Source: www.ge.com)

AC-DC Conversion

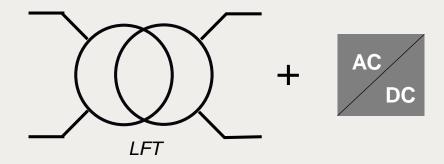
SST vs. Standard Solution

- Compatible with existing MV AC infrastructure
- AC-DC is more favorable as compared to AC-AC
- SST has 1 less while LFT has 1 more conversion stage as compared to AC-AC
- AC-DC SSTs can be interesting in applications where the efficiency vs. weight ratio is challenging (railway [2]) or when multiple LVDC outputs are needed (emobility [1])

Conclusion

 Due to backward compatibility with MV AC distribution applications such as railway and emobility may be the first adopers of the SST technology.

CIGRE Centennial Session 2022


[2] D. Dujic, F. Kieferndorf, F. Canales, and U. Drofenik, "Power electronic traction transformer technology," Power Electronics and Motion Control Conference, Jun. 2012

© CIGRE 2022

MV LFT plus LV rectifier

AC-DC Conversion

Railway

- 1-ph AC grids 15kV (16.7Hz) or 25kV (50Hz
- On-board installations serious space constraints
- Volume and Weight reduction system savings
- Efficiency easy to beat traction LFT
- Control similar to existing solutions
- Reliability, cost high number of devices?

[2] ABB's 1ph, 1.2MW, 25kV 16,7Hz PETT (Source: www.abb.com) **CIGRE Centennial Sessior 2022**

EV Charging

- 3-ph AC (50, 60Hz) 3.3, 4.16, 6, 11, 15, 20kV...
- Footprint and weight a factor for installation costs
- Reliability more complex due to 3-phases
- Efficiency improved compared to state of the art
- Control similar
- Cost savings on installation

Resilient Power's up to 3.2MW, 15kV 50/60Hz SST (Source: www.resilientpower.com)

90% size savings

0.5MW/m3

day

Instalation in 1

25% redundancy

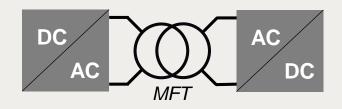
same volume

1y succesfull

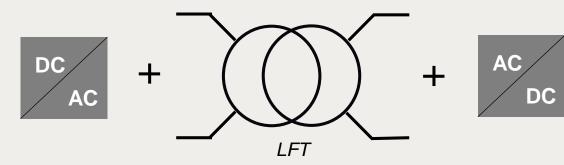
operation in

the field

DC-DC Conversion


SST vs. Standard Solution

- SST is the natural solution for DC-DC conversion
- State of the art 50Hz devices can also be used for the sake of availability, but SST will ensure better efficiency and lower cost in the DC-DC application
- Efficiency such as 98,9% @ full load can be reached by the SST for the full DC-DC

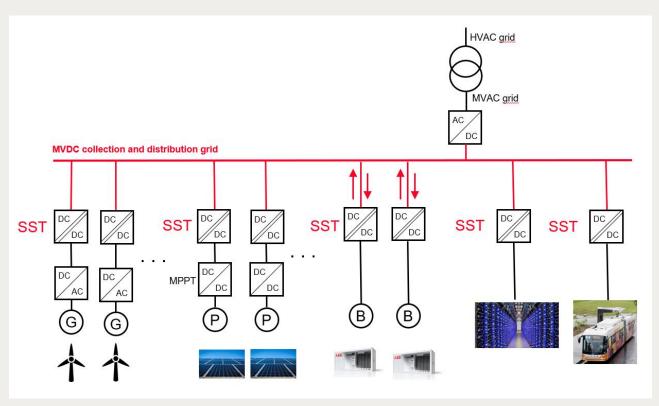

Conclusion

 MVDC distribution will be the main driver of SST in the medium to long term

Principal schematic of DC-DC SST

MV LFT plus MV DC-AC inverter and LV rectifier

CIGRE Centennial Sessior 2022


MVDC Grids

Key advantages of MVDC grids

- More efficient power distribution
 - More power per cable cross-section
 - Reduced cabling cost
 - Reduced cabling losses
- Reduced conversion losses from DC source to DC load
- Less power quality management issues
- No frequency synchronization needed
- Controllability enabled by SST
- Link between AC grids with different properties
- Detailed analysis of MVDC application available in [3]

MVDC Grid Vision

[3] "<u>Medium Voltage DC Distribution Systems</u>" CIGRE Technical Brochure C6/B4, July 2022, Reference: 875 CIGRE Centennial Sessior 2022

© CIGRE 2022

MVDC Grids – Possible First Adopters

Marine LVDC / MVDC Distribution

- System level benefits
 - No frequency synchronization of generators
 - Integration of storage technologies
- No need to comply with TSO or DSO
 - \circ Islanded micro-grid
 - Internal parameters can be freely set
 - Protection coordination

Conclusion

 MVDC distribution and therefore the SST as enabling technology can bring significant benefits to ship microgrids without the additional burden of strict TSO and DSO policies.

Example of a MVDC ship distribution

(Source: <u>www.abb.com</u>)

CIGRE Centennial Sessior 2022