Paris Session 2022

Influence of pressure and temperature on O-ring lifetime in highly pressurized dry air

A3 PS2 Q7

KOMA SATO (Japan)

© CIGRE 2022

2021

1

PS2 Question 7

• Q7: The filling pressure of equipment with natural-origin gases is often above 1 MPa. Is there any experience or an estimate on the long-term leakage or other lifetime limiting mechanisms, including mechanical damage, deformation of internal parts, e.g., vacuum interrupters at 0 MPa?

Answer

- Lifetime limiting mechanism:
 - >> Gas pressure dependencies of the O-ring lifetime
- Estimate on the long-term leakage:
 - >> Lifetime estimation utilizing annual equivalent temperature

Group Discussion Meeting

Gas pressure dependencies of the O-ring lifetime

<u>Test & Evaluation</u>

- ✓ Accelerated tests on compression set, a measure of permanent deformation, of EPDM O-ring in 0.8 MPa dry air (Fig1)
- Temperature dependencies of the reaching time to 80% compression set
- Comparison with the test results in nonpressurized dry air (Fig2)

<u>Results</u>

- ✓ Decreasing tendency of lifetime with gas pressure rise
- Acceleration of O-ring oxidation

Group Discussion Meeting

Lifetime estimation utilizing annual equivalent temperature

How to estimate lifetime accurately?

 Oxidation reaction rate increases exponentially with temperature

$$k = \frac{1}{\tau} \propto \exp\{\frac{-E}{RT}\}$$

(k:Reaction rate, r:Lifetime, E:Activate energy, R:Gas const, T:Temperature)

Actual lifetime is represented by annual equivalent temperature (EQ1).

Demonstration

- Calculation based on the data acquired in a substation (Fig3)
- Average temperature : 15.1 [deg C] Annual equivalent temperature : 17.7 [deg C]
- 20% reduction of lifetime in annual equivalent temperature Group Discussion Meeting

 $T_{EQ} = -\frac{E}{R \times \ln[\frac{1}{t_1 - t_0} \int_{t_0}^{t_1} \exp\{-\frac{E}{RT(t)}\}dt]} \quad \dots(1)$

(T_{EQ} :Annual equivalent temp, *E*:Activate energy, *R*:Gas const, t_1 - t_o :Measurement time, *T*(*t*):Temp change in the target area)

Figure 3 Example of calculation results based on the data acquired in a substation in Japan

© CIGRE 2022

Summary: Increasing precision for O-ring lifetime estimation

Gas pressure dependencies

There is a decreasing tendency of O-ring lifetime with gas pressure rise of dry air due to the progress of oxidation reaction.

Utilizing annual equivalent temperature

Considering temperature fluctuation at site, equivalent temperature should be used instead of average temperature for more accurate lifetime estimation.

->> Lifetime reduction due to the gas pressure rise and increase of temperature fluctuation was confirmed

Group Discussion Meeting