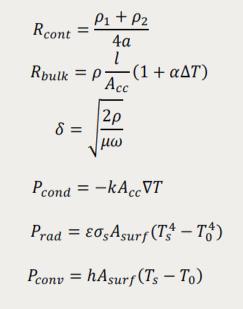
Paris Session 2022

Temperature Rise Test and Simulation SC A3 - PS2 - Q9 - There are conflicting reports on temperature rise performance of SK₆ alternatives – experts to shed some light on the various influential factors and how they are controlled Martin Kriegel - Switzerland

HITACHI Inspire the Next

Group Discussion Meeting


© CIGRE 2022

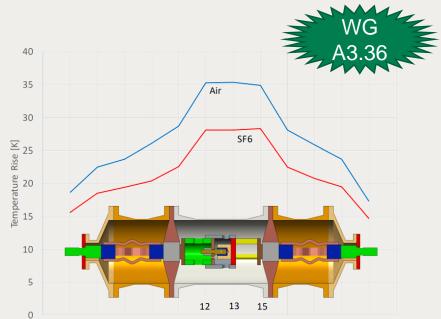
Hitachi Energy

Temperature Rise Factors

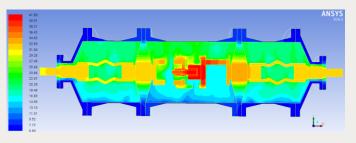
WG A3.36

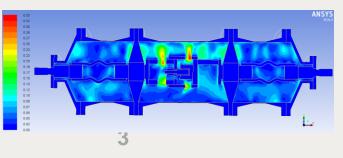
- Heat generation
 - Power loss
 - o Contact resistance
 - o Bulk resistance
 - o Skin effect
 - o Proximity effect
- Heat dissipation
 - Conduction
 - Radiation
 - Convection

 $P = RI_r^2$


Convection is the only parameter that depends on the gas; all other parameters depend on the design

Temperature Rise Test and Simulation


- Benchmark
 - Filling pressure: $p_{abs} = 1.5$ bar; 4 bar; 5 bar
 - Test current: I_{rms} = 1250 A; 2000 A; 2500 A
 - Insulating gas: SF_6 ; synthetic air (80% N₂, 20% O₂)
- Result
 - Gas: difference in temperature rise between SF₆ and synthetic air is about 7 K (at 4bar, 2000A)
 - Design: Contact resistances have big impact on temperature rise (simulation)


Performance prediction of a temperature rise simulation can be done when the simulation model is calibrated

Group Discussion Meeting

Evaluation Point

Conflicting Reports?

- 10658 C4-FN gas mixture compared to SF₆ increased pressure and no design changes – still higher temperature rise – additional small design change – same performance expected
- 10657 Air only in a pressurized air insulated cable
 no comparison possible Pressurized air insulated cable, no comparison
 included
- 10126 C4-FN gas mixture compared to SF₆ increased pressure and additional small design changes – same performance

No conflict in the reports seen when analyzing the impact of the influencing factors (gas properties, filling pressure and design)

Higher temperature rise with C4-FN gas mixtures compared to SF₆ can be compensated by higher filling pressure and small design changes.

Group Discussion Meeting