Paris Session 2022

Influential factors on temperature rise performance of SF₆ alternatives

Study Committee A3 – PS2 – Q9

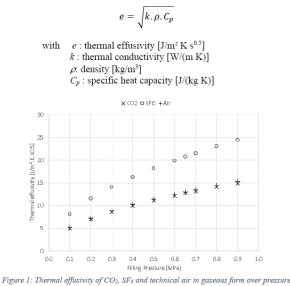
There are conflicting reports on temperature rise performance of SF_6 alternatives. Report 10658 reports an issue, 10657 reports high values at 2500 A whereas authors of 10126 show results like SF6. Can specialists shed some light on the various influential factors and how they are controlled?

Cyril GREGOIRE - FRANCE

Group Discussion Meeting

© CIGRE 2022

1


© CIGRE 2021

Influential factors on temperature rise performance of SF6 alternatives

• Influence of changing the gas: thermal effusivity

- Effusivity is much higher in SF6 than in natural origin gas at a given pressure
- Technical air and CO₂ have similar effusivity
- C4FN slightly enhances the performance
- Higher pressure partly compensates the reduced effusivity

Group Discussion Meeting

Influential factors on temperature rise performance of SF₆ alternatives

• Overall temperature rise increases by 10-15% between SF_6 and its alternatives

•The influential factors are mainly:

-Gas type and filling pressure

-Conductor design and material (impact on heat source, convective and radiative heat transfer)

-Contacts design (impacts on heat sources)

• The same nominal current ratings and footprint can be achieved with C4FN/O₂/CO₂ by implementing small design adaptations.

Group Discussion Meeting