Paris Session 2022

How to prove long term performance for EHV cable system

SC B1 Insulated Cables - PS1 - Q5 Shoji Mashio(Japan)

Group Discussion Meeting

© CIGRE 2022

1

© CIGRE 2021

How to prove long term performance for EHV cable system ?

- Long term performance criteria of HVAC cable system has been proposed and demonstrated by PQ test since the establishment of IEC 62067 (2001).
- However, it seems not proved yet by the operational statistics (CIGRE TB815, 2021)

AC ACCESSORIES		VOLTAGE RANGE kV					
CABLE TYPE	COMPONENT TYPE	all voltages	60-109kV	110-219kV	220-314kV	315-499kV	500kV and above
Extruded cables (EPR, PE or XLPE)	Joint	0.0047	0.0021	0.0160	0.0266	0.113	0
		145905pcs/62faults	123230pcs/23faults	16624pcs/24faults	5449pcs/11faults	353pcs/4faults	249pcs/0faults
	AIS Termination Fluid filled Porcelain	0.0107	0.0018	0.0111	0.570	0	
		29530pcs/28faults	25081pcs/4faults	4011pcs/4faults	420pcs/20faults	18pcs/0faults	
	AIS Termination Fluid filled Composite	0.132	0.0362	0.0307	0.344	0.833	
		2741pcs/23faults	597pcs/1faults	1347pcs/3faults	773pcs/17faults	24pcs/2faults	
	AIS Termination	0.0036	0.0040	0	0		
	Porcelain	3086pcs/1faults	2788pcs/1faults	286pcs/0faults	12pcs/0faults	0pcs/0faults	
	AIS Termination	0.0880	0.111	0	0	0	
	Dry Composite	2636pcs/13faults	2149pcs/13faults	448pcs/0faults	36pcs/0faults	3pcs/0faults	
	GIS or Transformer Termination Fluid filled	0.0127	0	0.0265	0.0347	1.00	0
		9412pcs/11faults	6332pcs/0faults	1332pcs/3faults	1706pcs/5faults	30pcs/3faults	12pcs/0faults
	GIS or Transformer Termination Dry	0.0068	0.0039	0.0114	0.155	0	0
		34244pcs/20faults	29284pcs/10faults	4344pcs/4faults	559pcs/6faults	27pcs/0faults	30pcs/0faults

Table 11 Failure rates on the different types of AC land cable accessories (Unit: Faults/100units-year)

PQ tested system (220-500kV) shows much higher failure operational rate than SCOF cable system (approx. 2-10 times), and lower voltage XLPE system without PQ test shows less failure rate.

Failure mode after long time use

- Miss workmanship could be already checked by AC high voltage test at commissioning test, however, deterioration after long time use is difficult to be predicted, or not successfully recognized at early stage.
- The following is an example of Japanese report (IEEJ Trans 2007) about "Extraction mechanism" by combination of chemical and electrical deterioration.

Fig. 12 Extraction of additive from rubber

Extensive performance tests after Type/PQ test for EHV DC cable system

• Case 1: Space charge measurement after 400kV PQ test

 \Rightarrow No obvious distortion of electrical stresses even at 1000kV. (Fig b below)

- Case 2: Additional 100 heating cycle after 400kV type test
 - \Rightarrow More than 120 cycles and total of 120 Impulse shots were completed
- Case 3:Successful DC 525kV type test after 525kV PQ test complete

 \Rightarrow After successful completion of DC525kV type test, breakdown test was conducted at the DC superimpose LI (+/-640kVdc -/+ 1344kVp) to prove design limit, but without no clear indication of deterioration after dissection.

EHV DC cable system (≥20kV/mm) has shown no electrical deterioration so far.

some

More insight in chemical deterioration are necessary as we experienced in HVAC XLPE cable system.