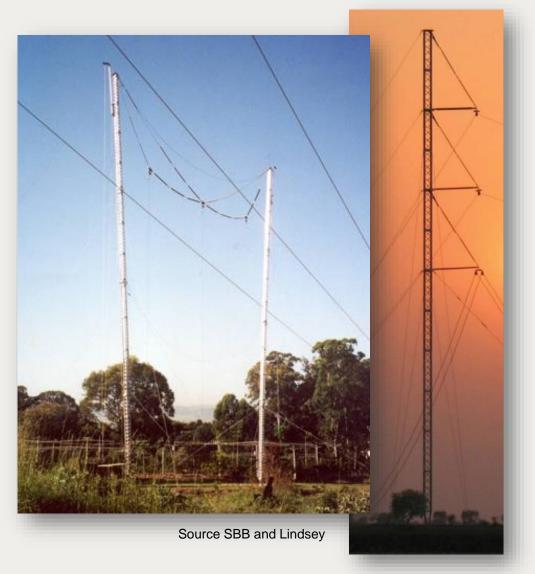
Paris Session 2022

Aluminium Tower for 420 kV AC OHTL Study Committee B2 Preferential Subject 1 Q1.6 Why guyed modular aluminium alloy structures (like those used as ERS) were not considered as an option?

Gilles Sabatier-Olne - Norway

Group Discussion Meeting

Standard ERS mast on the market


•Optimized for light weight and ease of construction under emergency situations

•Typically, limited number of strength classes available – high risk of inefficient material usage

•Assumption (not checked) that we would not find a standard product with sufficient strength for 150 - 500 years return time for wind and ice loads for the required span configurations

•Not suited to equalize cable tension under uneven ice load

Group Discussion Meeting

Material and production cost - Optimize design

•Aluminium ~3 times more costly than steel

•Aluminium towers require design optimization to be economically competitive

•Optimize strength usage for each tower site specific loading - use amount of material necessary only

•Reduce production cost by selecting efficient fabrication method (limit or choose appropriate welding, cutting, drilling...)

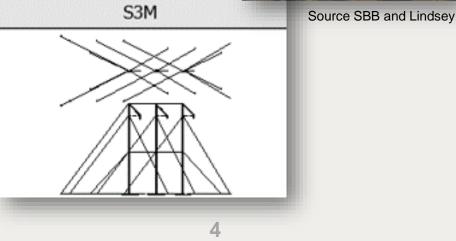
Conclusion: develop tailor-made guyed mast structure system.

Group Discussion Meeting

© CIGRE 2022

Source Hydro

3


Other design requirements – ERS type mast not suitable

- •Horizontal flat configuration of the phase conductors
- •Small footprint of the structure to facilitate spotting in rough terrain
- •Limit foundation work (which is costly)

- Guyed modular mast not well suited to fulfill these requirements:
- •Large footprint multiple guys
- Not suited for steep terrain
- Site selection difficult

Suspension 3 Masts

© CIGRE 2022