Paris Session 2022

Carbon Footprint of SF₆ Alternatives for HV GIS

SC B3 – PS2 – Question PS2.2 Michael Gatzsche, Navid Mahdizadeh, Henrik Lohrberg, Shreya Pai Switzerland, Germany, Sweden

> HITACHI Inspire the Next

Group Discussion Meeting

© CIGRE 2022

Hitachi Energy

© CIGRE 2021

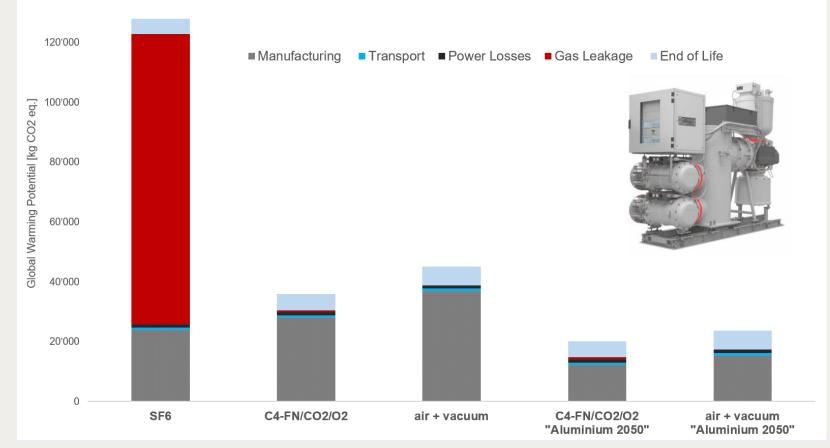
Question and our contribution

Question PS2.2

Much development has taken place to reduce SF₆ impact on the environment from utility application for electrical insulating and interrupting equipment. What are likely to be the enduring initiatives to prevent SF₆ gas leaks and find a possible alternative to SF₆ for GIS applications?

Answer

Hitachi Energy's and other equipment manufacturers' alternative to SF₆ for GIS and further switchgear applications is C4-FN/CO₂/O₂ gas mixture for insulation and interruption. In the contribution, we use a Life Cycle Assessment of a 145 kV GIS to detail how the equipment's impact on global warming is reduced compared to SF₆. We show that by virtue of the equipment's compactness, C4-FN/CO₂/O₂ technology enables and will for the next decades continue to enable lower overall carbon footprint than other SF₆ alternatives do. We also address the 2022 F-gas regulation proposal by the European Commission and its impact on technology choice.


Possible Alternative to SF₆ for GIS Applications

- **SF**₆ has enabled **reliable**, **compact and performant** HV gas-insulated switchgear (GIS).
- With improved sealing systems, handling procedures, and adequate service, SF₆ emissions are significantly reduced, but they stay dominant in overall carbon footprint of HV GIS.
- Regulators are pushing to reduce carbon footprint of the equipment. The 2022 F-gas regulation proposal by the European Commission can pave the way to a phase-out of SF₆ by the end of the decade. The proposal in its current form is focused on the GWP (global warming potential) of the gas only, giving preference to solutions with GWP < 10.
- Today, eco-efficient SF₆ alternatives have been developed and first equipment is commissioned and operated by the users. For **high-voltage GIS** two SF₆ alternative technologies are dominant:
 - **C4-FN/CO₂/O₂** gas mixture for insulation and interruption, GWP = 300...600
 - **Synthetic air** in combination with **vacuum circuit breakers**, GWP = 0
- GWP of the gas is not the only criteria, it does not consider the **overall environmental footprint** of the entire **switchgear** and the **substation**.
- Product Life Cycle Assessments (LCA) can help chose the solution with minimal environmental impact.
- Equipment size is an important factor for application of GIS.

Group Discussion Meeting

LCA 145 kV GIS – Carbon Footprint for 40 Years

One double-busbar-bay including CB, CT, DES, MPES, VT, cable connection, LCC and steel support

SF₆: current equipment, 0.1 %/year leakage

SF₆ alternatives: detailed design study:

C4-FN/CO $_2$ /O $_2$: 0.2 %/year leakage (irrelevant for air)

Air + VCB: one size up (equivalent to 170 kV SF_6), smaller drive for VCB

Production incl. aluminum in Europe (global carbon footprint of aluminum would be higher)

800 A permanently, operation in grid with renewable energy

Aluminum assumption today: 0 % recycled aluminum is used for production, 95 % is recycled at end of life

"Aluminum 2050" scenario: 100 % recycled aluminum is used for production, 100 % is recycled at end of life – circular economy

LCA 3rd party verified according ISO 14040/14044

Group Discussion Meeting

Outcome of Comparison of Different LCA Scenarios

- Two technology options for 145 kV essentially eliminate carbon footprint of insulation gas losses over the lifetime of HV GIS:
- C4-FN/CO₂/O₂ for insulation and interruption
 - Lowest overall CO₂ eq. emissions
 - Equipment has similar size as today's SF₆ equipment, low material (aluminum) and space consumption
 - Proven gas circuit breaker technology
 - Scalability to higher voltages: 245 kV, 420 kV, 550 kV and beyond
- Technical air and vacuum CB
 - No CO_2 eq. emissions from insulating gas (GWP = 0)
 - Larger equipment as today's SF₆ technology and associated carbon footprint for materials production (mainly aluminum, will remain relevant factor for the foreseeable future, even in a fully circular economy)
- GWP < 10 as in current F-gas regulation proposal would limit technology choice and disadvantage C4-FN/CO₂/O₂ technology with lowest overall carbon footprint and more compact spatial footprint (smaller switchgear buildings and associated emissions)
- SF₆ phase out could actually be delayed by limiting technology choice
- Insulating gas based on C4-FN is versatile and additionally enables Retrofill of existing passive equipment, preventing future SF₆ gas leaks in the large installed fleet with without exchanging primary equipment: **10103**, **10656**

Group Discussion Meeting

