Paris Session 2022

RELIABILITY ENHANCEMENT THROUGH MACHINE LEARNING COMBINED WITH ADVANCED DIGITAL METHODS FOR TRANSFORMERS AND REACTORS

> SC B5 (PS3: Integration of Intelligence on Substations Q3.1 Karsten Viereck (Germany)

Group Discussion Meeting

© CIGRE 2022

1

DIGRE 2021

I. Benefits of digital solutions like machine learning, artificial intelligence

250 Mvar VSR, 440 kV, acceleration sensor on tap-changer head cover

Wavelet - Transformation and filtering, Convolution with a Gaussian-Function Time frequency representation **Peak detection** and pattern recognition

Machine learning as an efficient method for online monitoring of operating equipment

If a deviation in time or amplitude is detected, the monitoring system generates an alarm message

LN: SVBR; data object: VAM Anom Det

© CIGRE 2022

II. Benefits of digital solutions for the equipment life cycle in substations

Application of a GREY BOX – Regression Model

For recalculation of vibration levels of selected harmonics in order to be able to detect changes in the active part of reactors / transformers

1. Vibroacoustic long-term Investigation on a 440 kV, 250 Mvar Variable Shunt Reactor

Violin plot to represent the statistical distribution of data over three years of VSR operation (about 22.500 data points)

Group Discussion Meeting

2. Verification of different Grey Box - Model Designs

				Model		
Input variable, <i>p</i>				COMPLEX	LINEAR	LIN COMB
Notation for the name of model				$F = \left \sum_{i} p_i \cdot (q_i + q_{(t)i} \cdot T) \right $	$F = \sum p_i \cdot \left(q_i + q_{(t)i} \cdot T \right)$	$F_i = p_i \cdot \left(q_i + q_{(t)i} \cdot T \right)$
i ²	ui	u ² x	u ² x ²	$\begin{vmatrix} \vdots \\ a_i, a_{(t)i} \in \mathbb{C}. \end{vmatrix}$	i $q_i, q_{(t)i} \in \mathbb{R}$	$F = \sum_{i} a_{i} F_{i}$
C	alcula	tion for	mula			$q_i, q_{(t)i} \in \mathbb{R}, \sum_i a_i = 1$
i ²	u•i	u ² /x	u^{2}/x^{2}	$q_i, q_{(t)i}$ = argmin((F - v_{tank}) ²)	$q_i, q_{(t)i} = \operatorname{argmin}((F - v_{tank})^2)$	$q_i, q_{(t)i} = \operatorname{argmin}((F_i - v_{tank})^2)$ $a_i = \operatorname{argmin}((F - v_{tank})^2)$
					Root Mean Square Error (RM	SE)
x	x			0.188	0.204	0.205
x		X		0.195	0.210	0.211
x			Х	0.293	0.291	0.291
x		X	X	0.196	0.202	0.203

Parameter u^2x^2 just to check the correct convergence of the model

Selected regression model: i²_ui_linear

II. Benefits of digital solutions for the equipment life cycle in substations

Discussion of reactor vibration prediction

Conclusion

- Vibrations of a VSR can be reproduced by using a regression model
- Good conformity between the predicted and the measured values - no indication of a changed condition could be found
- Vibroacoustic analysis offers sufficient potential for the condition analysis
- Statistical data evaluation will be one of the essential features to characterise the operating condition and to create a new database for a digital asset management

Group Discussion Meeting