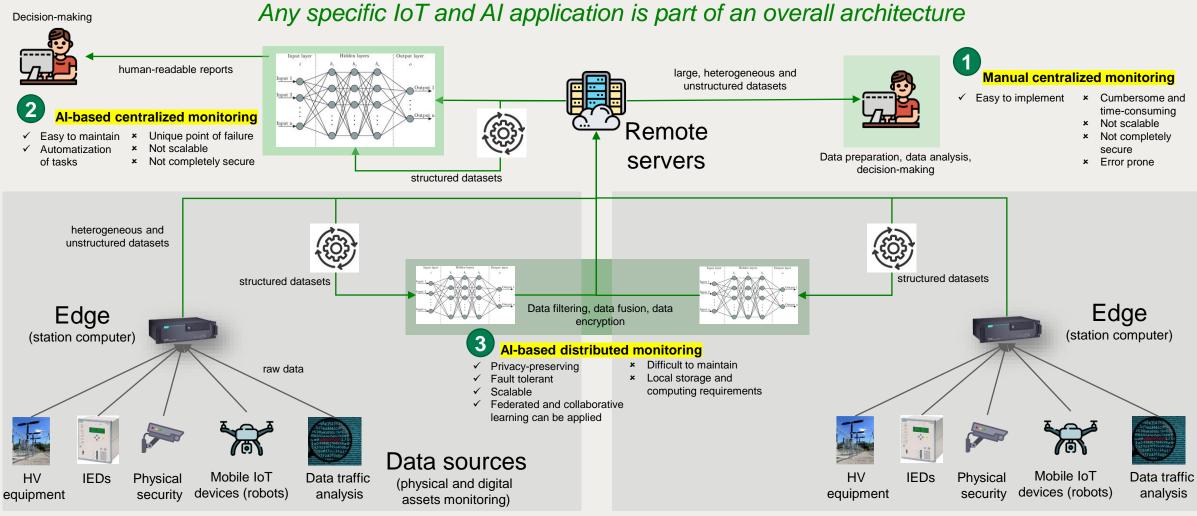
Paris Session 2022 End-to-end arch

End-to-end architectures for substation O&M

B5 PS3 Q3.Q1

- What are the benefits of digital solutions like IoT-sensors, machine learning, artificial intelligence, drones, robots etc. for substation life cycle from planning to maintenance?
- Which measures are necessary to increase the acceptance of intelligent IoT-based power equipment in substations?

Emiliano Casale (Italy)



Group Discussion Meeting

© CIGRE 2022

© CIGRE 2021

End-to-end architectures for substation O&M

Group Discussion Meeting

© CIGRE 2022

End-to-end architectures for substation O&M

Future research directions

Benefits of digital solutions for substation O&M

• <u>IoT (and robotics)</u>: data collection

• Artificial Intelligence: data management (filtering, organization, refinement, synchronization), protection (e.g., encryption), and interpretation (to facilitate decision making)

Multi-modality	 The integration and correlation of different information sources opens up new perspectives in substation monitoring. E.g.,, thermography and isolator sensors for hot spot detection RGB images and radar signals for substation physical security 	Persistent monitoring	loT-technologies provide continuous data flows.
Research directions	 <u>Sensor-rich platforms</u> to minimize hardware installation and correlated O&M efforts. <u>Data-fusion algorithms</u> to cope with source diversity (data synchronization, different dimensionality, different statistical distribution). 	Research directions	 <u>Automatic data ingestion modules</u> to cope with unreliable datasets and avoid extensive human data preparation. <u>Task scheduling programs</u> to release intensive computation from resource constrained devices. <u>Self-configuration and self-adaptation</u> strategies to cope with dynamic environmental conditions and changing requirements.
«Pervasive O&M»	Ubiquitous sensing increases the substation digital assets; hence, it comes at the cost of a higher system complexity.	Privacy and security	Environmental sensors pose severe questions on possible privacy violations, while complex data flows are exposed to data breach and poisoning attacks.
Research directions	 <u>Criteria and conditions</u> for the pre- and post-installation of substation pervasing sensing infrastructures. Self-diagnosis, fault tolerance and <u>fault mitigation mechanisms</u> for large sensor networks (e.g., by leveraging on the advantages offered by multi-modality). 	Research directions	 Robust <u>privacy-preserving and secure systems</u>, where formal guarantee of privacy and security is needed with tight accuracy loss.
Group Discussion Meeting			Thank you for your atte

Still several measures are necessary to increase the acceptance of intelligent IoT-based power equipment in substations

© CIGRE 2022