Paris Session 2022

Specification, Engineering and Testing aspects of digital substations from the primary point of view

SC B3 PS3 Q4

What are other experiences to improve the specification, engineering, testing and maintenance to address the challenges in our industry ?

JL RAYON (France)

SC B3 Group Discussion Meeting

© CIGRE 2021

Digital substation on the primary equipment side

Digital substation: Three main stages

• The first stage: keeping all conventional principles, CT & VT and protection CB tripping by wires. Upper-level communication between IEDs (protections devices, meters,...) is made using 61850 Station Bus. The monitoring solution can be fully digital

• The second stage: integration of process bus and LPIT, all IEDs should be synchronized and compatible with the standard IEC61869-9. Protection & control are localized in the control room

• The last stage: integration of a Switchgear Control Unit (SCU) to locally operate/trip the CB. No more "conventional wiring" between Circuit Breaker & protection devices. The protection device will send a GOOSE command to trip the CB.

SC B3 Group Discussion Meeting

Specification of primary equipment for integrating in a digital substation

- For instrument transformer as LPIT type
 - the IEC61869-1 ED2 will define the general requirements for all type of instrument transformers.
- Control & Protection
 - Functional requirements \rightarrow identical
 - Details requirements \rightarrow Significant impact

POC085-01														
100 (100)												1		
G9 75 •	-)	XMU80	00					-14			OV O		1017	
T2 0 - P2						141	XMU800)			B:OU	Т	101	
P1		*	*	A:	IN		• •	*	-	*				1588
T3E (Q0)	Ы	A1 ≚ ≊	AZ ≚≊	A3 ≚ ≊	A4 ≚ ≊	A5 ≚ă	A6 ≚ ≊	≍ ≅ B1	BZ	B3 ≍ ≊	B4	≚ ≊ 85	B0	× ≊
•	5	00	00	60	00	00	00	00		00		60		00
130 / 130) (02(052) 8		/1	Ŧ	W2					NC * 0	ptical	NC trans	ceive	NC rs pr	ovided
D PDC002-01														
c														
nin PCC001-01														

83 X	MU800				SUP	ERVIS
Status	Settings	Commands	System	Maintenance		
Main Stream	1 Stream 2 Stream 2	Rule PCA1 PCA2	PCAS PCAL	CAS PCAS		
Upload Param Browse. N	eters (dataset_1 ofile selected.	.ini.a2c)	Send			
61850-9.2	General Con	figuration				
SVID			SVID_protectio	n		
APPID		16	384			
VLAN Priority		4				
VLAN CFI						
VLAN Identifie			5			
Destination M	AC Address	0	1 OC CD 04	00 01		
Data Type		Per	stection v			
Variant			F400051			
61850-9.2	Data Mappin	9				
	Position in Strea	m		Source		Phase
Channel 1			PC port A	1)	¥	A - ¥
Channel 2			PC port A	10		8 - V
Channel 3			PC port A	1.	×	
Channel 4			PC port A	1)		N V
			PC port A	2.4		A + Y
Channel 5						
Channel 5 Channel 6			PC port A	2+	×	8 - V

Environmental conditions	Normal				
	Special				
Ratings	Voltage and Current ratings				
	Dielectric ratings				
	Rated frequency				
	Output ratings				
	Rated Accuracy class				
Design and Construction	Liquid				
	Gas				
	LPIT secondary terminals				
	Vibration				
Tests	Type test				
	Routines tests				
	Special tests				
	Commissioning tests				
	Sample tests				
Rules for transport, storage,	erection, and maintenance				
Safety					

Monitoring → IEC TR 61850-90-3:2016 © IEC 2016

SC B3 Group Discussion Meeting

Influence of products on the natural environment

Engineering

Conventional substation

- Scope between primary & secondary is well known
 - -Electric terminals are the limit
 - -One drawing modification \rightarrow significant impacts

Digital substation

- Scope of responsibilities should be clarified at early stage
 - -IEC61850 well known by Automation engineers, partially by HV users
 - -IEC61850 part 4, System and Project management
 - $\circ \textbf{Engineering,}$
 - $_{\odot}\mbox{System}$ life cycle and
 - Quality assurance phases.

SC B3 Group Discussion Meeting

© CIGRE 2022

Test

The purpose of the testing is to prove that the system functions as specified

all the IED connected shall be "conformance tested".

A digital substation isn't built in a day. The journey typically begins with the upgrade of a single analog relay to a multi-function digital device. The actual technology provided by the manufacturers allows users to drive change at the speed he wants, but the time is running fast!

SC B3 Group Discussion Meeting