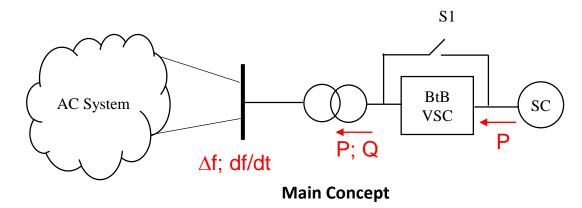
Paris Session 2022

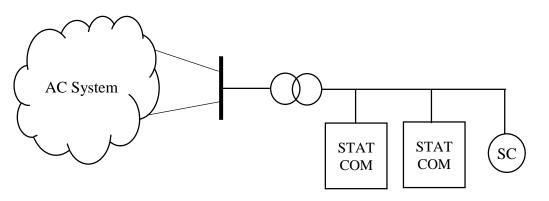
Considerations for Low Inertia and Short Circuit Level Improvement Study Committee B4 PS1-2 - Question 1.4Reduced inertia and short circuit capacity due to large integration of inverter-based power generation Mojtaba Mohaddes - Canada

Group Discussion Meeting

© CIGRE 2022

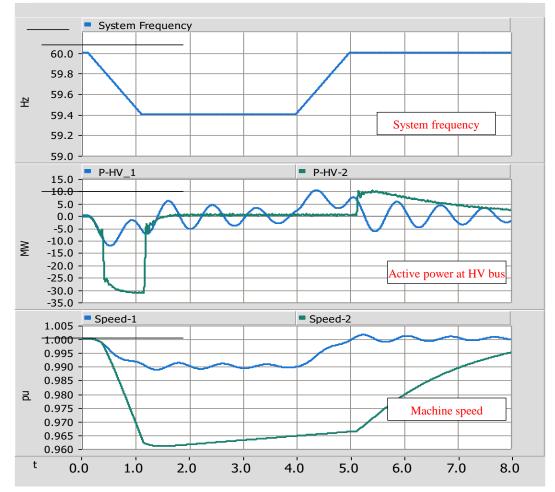
© CIGRE 2021


- Syncon provides:
 - Large short circuit current (~3pu) for a short time
 - Inertia
- Syncon limitations
 - In a typical event df/dt is small (<1Hz/s)
 - only a small portion of the machine's stored energy is exchanged with the power system
 - Machine's stored kinetic energy cannot be utilized to support the system frequency
 - Machine inertia opposes the recovery from a frequency event
 - Experiences electromechanical oscillations after a frequency or voltage event
 - Has a slower response compared to power electronic devices such as STATCOM and SVC


Proposed Solution

In a voltage event (and steady state)

- S1 is closed and the SC is synchronized to the power system
- Active power order for the BtB is zero
- Equivalent to syncon parallel with two STATCOMs
- Provides reactive power support and large SC current
- In a frequency event
 - S1 is opened
 - Machine side converter synchronized to the machine bu
 - Grid side converter continues to synchronize to the grid
 - Pref = K1 . Δf + K2 df/dt
 - Provides inertia AND fast frequency support
 - Use of BtB allows larger amount of the kinetic energy to be extracted from the SC



Steady state equivalent

Response to 1% drop in system frequency at a rate of 1% per second

• Standalone SC:

- provides/absorbs 6.5MW active power during the frequency ramps
- Oscillatory power

Proposed Solution:

- Pref = K1 . Δf + K2 df/dt
- In this case K1=0 \rightarrow SC provides pure inertia
- Apparent inertia 5 times the machine inertia
- No oscillatory response
- K2 set to zero during recovery to allow faster recover of frequency

Comparison of the proposed solution to standalone SC

- In steady state provides considerably higher reactive power support
- During voltage events provides higher short circuit current
- Provides fast dynamic response upon fault recovery
- In a frequency event can provide much higher inertia
- Can provide short term frequency support in a fast and controlled manner
- Does not oppose frequency restoration
- P and Q outputs are not oscillatory
- Capability of Power Oscillation Damping through both P and Q