Paris Session 2022

Managing Security Updates and extending the life time of HVDC installations

B4 PS1-3

HVDC Refurbishment

Question 1.5:

How should the existing HVDC installations manage the security issues and updates?

How can the lifetime of control systems be extended?

Leandro Vacirca (UK).

How should the existing HVDC installations manage the security issues and updates.

- This issue can be segregated into two largely independent areas.
 - Protection of the HVDC substation from external security events is typically provided by well known and highly regarded dedicated firewall and DMZ products.
 - Protection of the HVDC substation from malicious internal events which requires the HVDC system to be cyber secure.
- Firewall and DMZ security updates
 - Security patches have to be provided by the equipment manufacturer.
 - End user should ideally have a service/update agreement with the Firewall and DMZ supplier
 - HVDC system supplier may be able to act as an agent if there is a suitable service agreement in place.
 - The system communication architecture and physical design should anticipate the obsolescence of any dedicated hardware.
- HVDC control systems
 - Control Platform releases/updates should be routinely cyber security tested/reviewed.
 - Subject to a suitable service agreement, updates to be applied at the HVDC systems routine maintenance outage time if necessary.
- End User must ensure that strict cyber security policies are rigorously adhered to by their employees and contractors.

How can the lifetime of control systems be extended

- Correctly maintain system, make enough spares provisions, and take advantage of Last Time Buy offers.
- Use a control system that has been designed to more readily stand the test of time.
 - Clear functional and hierarchical physical modularity
 - Simple, preferably internationally standardized, interfaces between elements e.g., IEC61850
 - Hardware platform that is designed to minimize customized elements, to ensure that replacement hardware is a standard product available on the market both now and into the foreseeable future
 - Each element can then be upgraded but remains backwards compatible as it supports the same interfaces.
- The HVDC application is more important than the hardware it is executing on today.
 - The control system architecture must insulate the application from the hardware
 - Much easier to do using the high-performance computing, standardized communication systems, and IEC 61850 I/O systems available today.
- Use Model based design techniques to both improve the quality of the application and increase its portability, should a replacement future control system platform have radically different interfaces.