Paris Session 2022 For power system expertise Integration of Energy Storage into High-Capacity Power **Converters for Provision of Ancillary Services** SCB4 PS1 & PS3 – Grid Forming Applications (Special category) Question S.2 Kazuyori Tahata (JAPAN)

Group Discussion Meeting

© CIGRE 2022

© CIGRE 2021

Question S.2

Is there any practical experience around the world with the construction of supercapacitor banks and associated protection? Are there pilot projects to demonstrate the supercapacitor-enhanced STATCOMs?

Integration of Energy Storage Systems with High-Capacity Converters

Future system stabilisation equipment will require integrated energy storage systems for both short and medium-term active power support. This will allow an increased range of functionalities, such as synthetic inertia, fast-frequency response and energy balance services.

Coupling the energy storage system with the power converter is one of the challenges, with increasingly higher capacity systems being demanded. Key considerations include *safety, reliability/redundancy, maintenance, footprint, development hurdles and risks*, etc.

Group Discussion Meeting

Energy Storage Voltage Ratings

- Super-capacitor and lithium-ion based energy storage systems are typically built-up in three levels of increasing voltage: cell, module and cubicle.
- Due to the large number of cells, modules typically contain active balancing control as well as communication and monitoring systems.
- Current stage-of-the-art designs are based around cubicle designs in the range of *1,000~2,000 V*; and equivalent ratings for associated equipment.
- Increasing this voltage significantly is expected to require significant redesign of these components and systems.

DC Protection

- Supercapacitors have low ESR, resulting in large fault currents
- Protection equipment requirements (e.g. circuit breaker or fuse) becomes very severe when the ESS consists of high-voltage and large capacity units.

© CIGRE 2022

Impact of converter capacity on redundancy

Group Discussion Meeting

- The ESS impacts overall availability. The overdesign required to achieve N-1 redundancy is directly related to ٠ converter unit capacity, which influences cost/footprint.
- A small capacity is attractive from the point of view of readily providing redundancy. However, it is unattractive for very-• large scale systems, where the number of converters and associated secondary equipment will increase.
- Considering target system capacities 150~300MVA, a unit capacity of 10~20 MVA is seen as a good trade-off ٠

Number of converter units in system (without redundancy)

© CIGRE 2022

DC Voltage: Footprint Impact

DC voltages of several tens of kV is expected to increase clearance distances significantly, and thus increasing footprint, both between cubicles in different strings and to ground (floor, walls, etc.)

• With a lower dc voltage, a standardised cubicles can be used, and placed closely together, leading to a compact footprint.

Group Discussion Meeting

Conclusion

Optimising converter capacity (redundancy)

 The addition of energy storage within the power converter has an impact on overall redundancy and availability, which favours a medium sized converter capacity.

Matching energy storage devices with the converter

 Increasing dc voltage significantly from the current state of the art (1,000~2,000 V) will require development of higher voltage energy storage modules and cubicles.

Protection considerations

• Faults within the ESS can lead to significant shortcircuit current, and adequate protection systems are critical.