

Key Consideration for Ensuring Effect of Proposed Control Method using RoCoF Relay SC B5 PS1 Q 1.04 Are there any key considerations for securing the ROCOF protection against maloperation? Hayato SATOH (JAPAN) CRIEPI

Central Research Institute of Electric Power Industry

Group Discussion Meeting

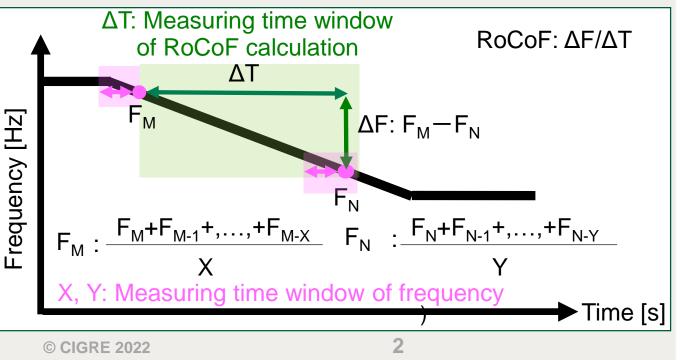
Paris Session

2022

© CIGRE 2022

1

© CIGRE 2021

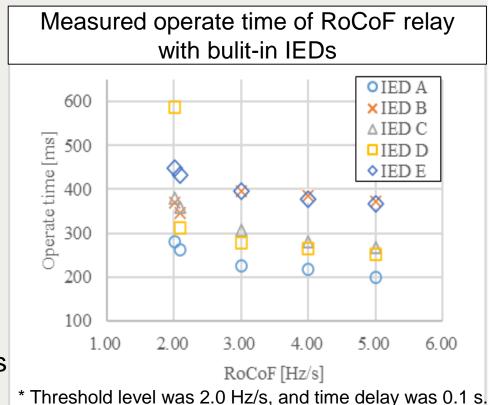

- Key Consideration to avoid RoCoF relay malfunction -Logic of Anti-islanding RES Protection Relay that should be Considered

• It is important to use **the RoCoF calculation method** equivalent to **the anti-islanding RES protection relay** for the RoCoF relay to **ensure both accuracy and fast-response of the RoCoF relay** that detects RES self-disconnection.

•In the logic of RoCoF relays, the RoCoF is calculated as df/dt at a certain measuring time window.

•The main elements and parameters that characterize the characteristics of the anti-islanding protection relay are as follows.

- Frequency detection method (Zero-crossing, etc.)
- Measuring time window of frequency
 - (: How many cycle averages are used)
- Measuring time window of RoCoF calculation
- Operating condition
 - (Operate with a single logic, or under the OR condition of multiple logics, etc.)
- Note: The difference in these parameters among RES manufacturers is large.
 Group Discussion Meeting



Current Performance of RoCoF Relay with Built-in Commercial IEDs

• The difference in **the operate time** among manufacturers was quite large. It is assumed that the differences is due to differences in the **Measuring time window of frequency**.

•The measuring time window of RoCoF and frequency calculation (: how many cycle averages are used) are considered the main parameters.

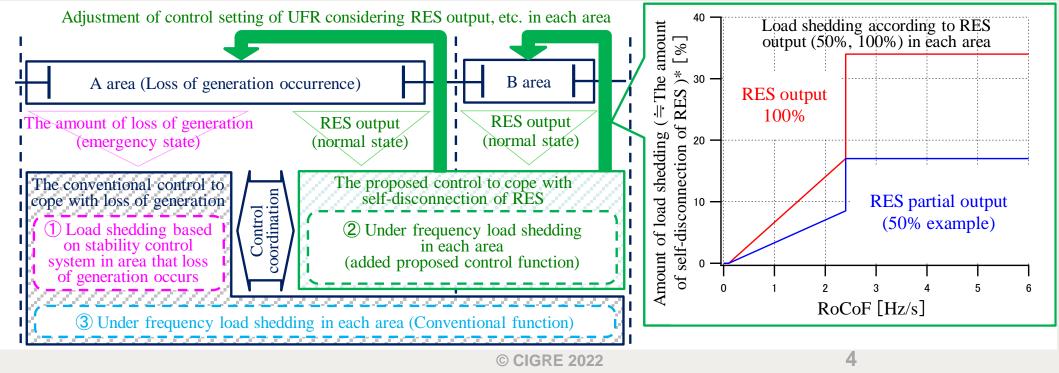
- However, the calculation method is manufacturerspecific, and **these parameters cannot be changed**.
- It is preferable to be able to use arbitrary calculation method equivalent to the anti-islanding protection relay.(Note: anti-islanding protection relay characteristics can be emulated by combining multiple RoCoF relays)

Specification	IED A	IED B	IED C	IED D	IED E
Measuring time window of RoCoF calculation [cycle or s]	6 cycle	5 cycle	5 cycle	5 cycle	0.1 s
Measuring time window of frequency calculation [cycle]	5 cycle	15 cycle	12 cycle	10 cycle	5 cycle
© CIGRI	© CIGRE 2022		3		

H. Satoh, N. Ueda, M. Masuda, and H. Amano, "Current Performance and Issue of Protection IEDs from the Perspective of Emergency Frequency Control," in Proc. CIGRE KYOTO, April. 2022.

Key Consideration to avoid excess/deficiency load shedding – Adjustment of RoCoF Relay Setting Appropriately According to System Status

•Adjustment of the relay setting flow to maintain the accurate amount of the load shedding for


RES self-disconnection is as follows.

To estimate accurately, it is important to thoroughly keep track of or share information on the characteristics of each RES anti-islanding protection relay.

- 1) Estimate the output of RESs.
 2) Estimate the amount of RES self-disconnection (≒load shedding) vs. RoCoF.
- 3) Adjust the settings of each RoCoF relay.

G

- 4) Send setting change command to each RoCoF relay.

