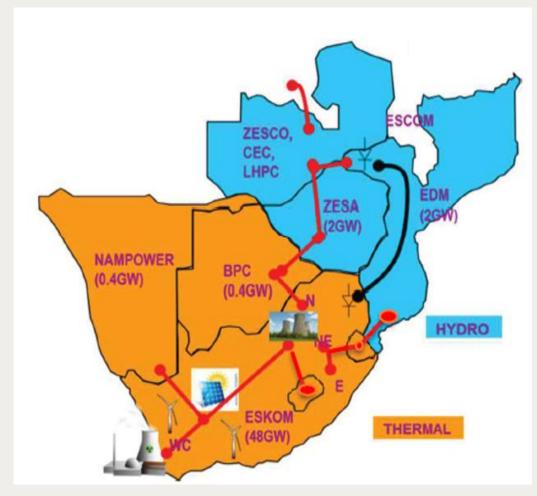
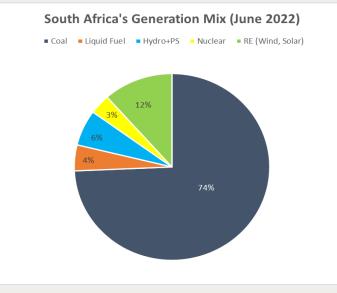
Paris Session 2022

Maintaining Power System Security Under Extreme Operating Conditions What mechanisms can assist maintaining power system security under extreme low demand and/or low inertia conditions?

SC C2 Preferential Subject 2, Q2.10 Marathon Ntusi, South Africa



Group Discussion Meeting


© CIGRE 2022

© CIGRE 2021

Overview of Southern African Power System

Group Discussion Meeting

- South Africa is currently experiencing **severe generation shortages** due to ageing of its predominant **coal** fleet.
- **Operating reserve provision** is mostly **deficient** throughout the day.
- The country's **integrated resource plan** indicates a significant penetration of renewables energy and a subsequent decommissioning of synchronous generators by **2030**.
- South Africa is part of the **Southern African Power Pool (SAPP)**

Maintaining Power System Security Under Extreme Operating Conditions

Power system security will be maintained through **planning** and **operational** interventions

Planning interventions

- a) Ensure long term integrated **energy plan** is **flexible** as far as possible
- b) Ensuring that contracted primary, secondary and tertiary **reserves** meets minimum **reliability requirements** for compliance with **South African Grid Code**
- c) Increase utilisation of demand response for frequency control
- d) Contracting **reserves** from non-conventional/ inverter based sources e.g. BESS, Wind
- e) Increased **participation** in newly formed **balancing market** will enable South Africa to access cheaper hydrobased balancing power from Northern SAPP countries

Group Discussion Meeting

Maintaining Power System Security Under Extreme Operating Conditions

RSA Frequency Control Framework

Frequency Hz	Automatic Reserve/ Scheme	
> 51.0	Generators may be tripped	
50.50	Continuous Operating Range	Mandatory Governing (all online gens)
50.25		Primary/ Secondary Reserve
50.15		Secondary Reserve
49.85		
49.75		Primary/ Secondary Reserve
49.65		Demand Response
49.50		Pumped Storage U/F Auto-start
49.40		Pumped Storage & Gas U/F Auto-start
49.30		Pumped Storage Emergency Trip
49.20		Under Frequency Load Shedding
< 49.0		Generators may be tripped

Group Discussion Meeting

Operational interventions

- a) Optimisation of automatic under-frequency scheme settings at pumped storage and gas generators for different modes of operation i.e. Pump mode or Synchronous Condensor Operation (SCO) mode
- b) Strict enforcement of compliance to Grid Code for mandatory frequency response e.g. when frequency > 50.50Hz all online generators shall reduce generation
- c) Optimally tuning of SAPP protection devises to ensure that inter-area oscillatory mode of 0.3Hz gets sufficiently damped if triggered
- d) Real-time monitoring of damping to ensure a secure interconnected power system