Paris Session 2022

Overview of harmonic compliance studies of large windfarms in The Netherlands C4 PS1 Q1

On the subject of management of PQ in evolving power systems, what are the difficulties/drawbacks with the existing approaches?

Daniël Vree – The Netherlands Energy Solutions

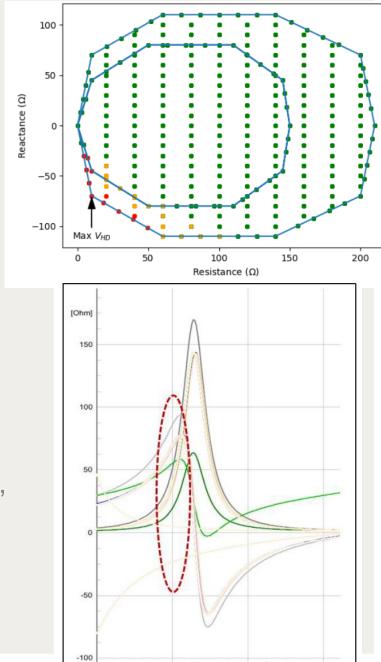
Group Discussion Meeting

© CIGRE 2022

© CIGRE 2021

Overview of harmonic compliance studies of large (type D) windfarms in The Netherlands

In support of various wind farm (WF) developers, Energy Solutions performed as well as reviewed many pre-connection harmonic compliance studies of type D WF in the past years.


Main characteristics of the studies:

- WF power level between 80 MW and 400 MW, 15 90 Wind Turbine Generators
- Connection point voltage level: 50 kV 150 kV
- Scope: Wind Turbine Generators (WTG) + array cables, step up transformer. export cable (up to 55 km)
- Assessment methodology:
 - TSO /DSO provides impedance envelopes and limits for each harmonic order
 - WF to determine maximum voltage distortion U_{hi} (%) per harmonic order

Assessment practice

- Some low order harmonic orders usually exceed limits
- Compliance still can be achieved by:
 - TSO/DSO checking exceedance plot on actual loci
 - U_{hi} reduced by phase angle randomization (even h only)
- Exceedance plot example (h = 11):
 - grid impedance area (R / X) where WF is not compliant
 - Assessment of impedance scans (by WF or TSO/DSO)
 - Chance of resonance is usually very low (e.g. related to an N-2 grid outage situation)
 - Operational agreement between wind farm and TSO/DSO accepting the risk:
 - If voltage distortion at PCC would exceed the planning level, the wind farm shall reduce power or switch-off.

Group Discussion Meeting

500

550

600

650

© CIGRE 2022

Conclusions and possible improvements

- Filter installations at WF could be avoided on all assessed WF, but:
 - Administration and workload for both TSO/DSO and WF is high
 - Operational agreement has to be implemented
- Only limited converter/WTG OEM provide supporting measurements to substantiate phase angle randomization for even and triple harmonic orders.
- Possible improvements:
 - TSO/DSO to provide envelopes for each individual harmonic order separately for N, N-1 and N-2 grid states. Alternatively, impedance scan data could be provided.
 - As a standard, measurements on prevailing angle ratio (IEC61400-21) including substantiation how a low PAR of a certain harmonic order can be used to randomize phase angles in harmonic load flow simulations

Group Discussion Meeting