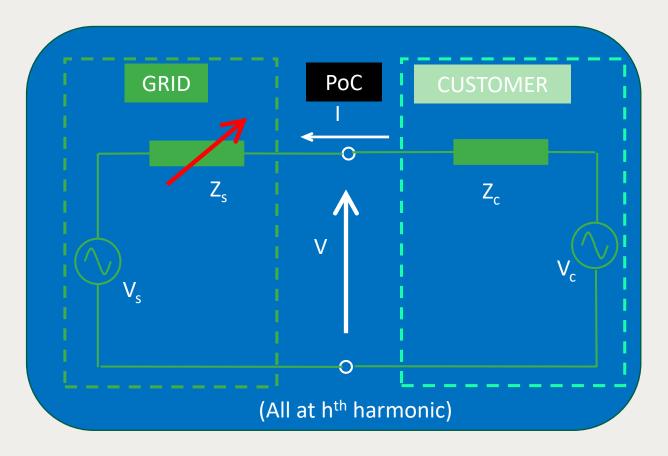
Paris Session 2022

Customer Emission Level Definition

C4 System Technical Performance PS1, Question 1:

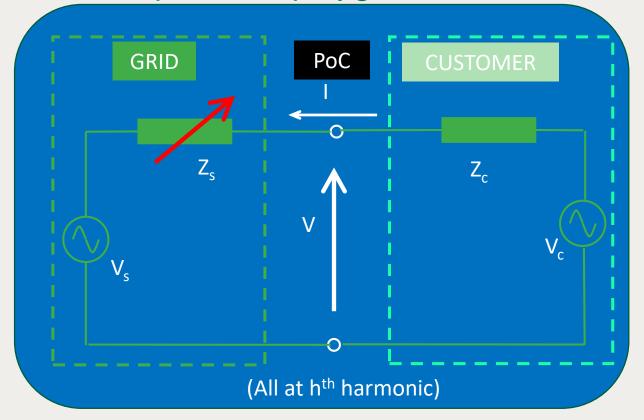
On the subject of management of power quality disturbances in evolving power systems, what are the difficulties/drawbacks with the existing approaches which require focus/development ensuring that the regulatory mechanisms, engineering methodologies and solutions are practical, robust and cost-effective?

Timothy J Browne, Australia


Group Discussion Meeting

© CIGRE 2022

1


Customer emission level is not well defined

- Traditional approach considers only harmonic sources on the customer side (V_c)
- Implied definition ignores impact of Z_c upon background sources V_s
- Paper 10428 proposes "Global" method as an alternate approach to the customer emission level

Allocated customer emission levels are onerous when incorporating multiple network operating conditions via impedance polygons

- Allocated emission level is determined from a single operating condition Z_s
- Is compliance assessment meaningful if based solely on worst-case Z_s, Z_c combination?
- Customer still has to meet allocated E_{Uhi} even when Z_s, Z_c combination is not worst-case

Limit structure alignment with grid objectives warrants revisiting

297 limits / plant (594 if considering separate limits for background amplification)

→ Can we reduce to only a few indices c.f. 49 individual limits per phase per aggregation interval?

e.g. Barr & Gosbell, "Power System Harmonic Limits for the Future", *Proc. ICHQP*, 2014

 Opportunity to accept higher emission levels at one harmonic in return for reduced limits at other harmonics?

Renewed focus on managing long-term effects of harmonics on connected equipment