Paris Session 2022

Parameter Evaluation of Composite Voltages

SC D1: Materials and Emerging Test Techniques PS 2: Testing, Monitoring and Diagnostics Question 1.01: Which parameters require a more precise specification? Which parameters in the superimposed voltage waveform have proven to be particularly critical?

Andreas Dowbysch, Germany

Lack of Information in Front Time T_1

Composite voltage with spherical spark gap —Recorded curve — Test voltage curve

- Steep voltage rise in composite voltage waveform if a spherical spark gap is utilized
- Lightning impulse evaluation from IEC 60060-1 is also applied to composite voltage
- Test voltage curve and so the front time T₁ do not represent the steep voltage rise
- Possible impact of steep voltage rise on the dielectric strength (voltage-time characteristic)?

CIGRE Session 2022

Different Base Values for Evaluation of Time to Half-value T_2

- Two different base values for evaluation of T_2 of a composite voltage possible
 - From DC potential (offset removal)
 - From ground potential
- Different time to half-values *T*₂ for the same composite voltage curve
- Different evaluation procedure for generating composite voltages with blocking capacitor and spherical spark gap ⇒ different waveforms

⇒Impact on dielectric strength?

Summary

© CIGRE 2022

Thank you for your kind attention!

