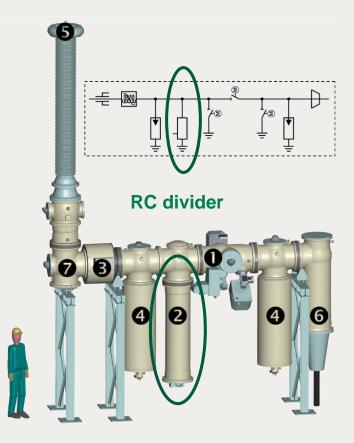
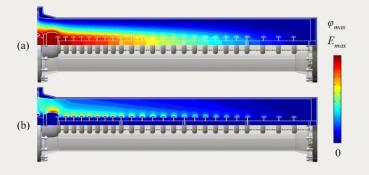
Paris Session 2022


Requirements on the design and testing of RC voltage dividers for application in HVDC GIS SC D1 – Materials and emerging test techniques PS 1 – Testing, monitoring and diagnostics Question 1.03 – Gas-insulated voltage dividers for HVDC application Maria KOSSE, Dr. Ing. (Germany), Erik SPERLNG, Dr.-Ing. (Switzerland)

© CIGRE 2022

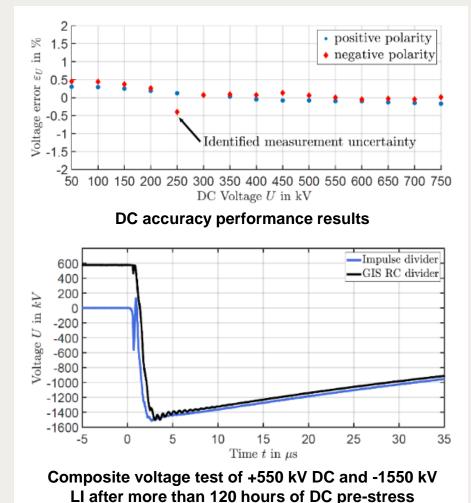
Requirements on the design and testing of RC voltage dividers for application in HVDC GIS

- Worldwide development activities on HVDC GIS with products available up to $U_r = \pm 550 \text{ kV DC}$
- Standardization for HVDC GIS prepared with CIGRE TB 842
 - Additional thermo-electric tests to consider DC specifics in terms of electric field distribution of insulators, influenced by the accumulation of electrical charge carriers and the inhomogeneous temperature distribution
 - High importance: composite voltage testing (DC + impulse) after long DC pre-stress (reaching DC steadystate) with maximum temperature gradient
- Standardization for low-power instrument transformers within IEC 61869 series


Analysis of existing CIGRE recommendations and IEC standards

- Requirements for AC and DC withstand voltage tests are comparable
- Requirements for LI voltage tests are the same. SI voltage test acc. IEC 61869-15 only with positive voltage, while acc. CIGRE TB 842 for both polarities
- Composite voltage tests not existing acc. IEC 61869-15. According to TB 842, composite voltage tests ensure appropriate insulation performance under transient overvoltages during operation

Equipment U _r = U _m =	: ±550 kV	DC GIS	RC divider
Standard		CIGRE TB 842	IEC 61869-15
DC withstand	U _{DC} / kV	$1.5 \text{xU}_{\text{r}} = \pm 825 \text{ kV}$	
voltage test	t _{DC} / min	1	60
AC withstand	u _{AC} / kV	1.5xU _r /√2 = 583 kV	
voltage test	t _{AC} / min	1	
Impulse	Û _{LI} / kV	±1550	
voltage test	Û _{SI} / kV	±1175	+1175
(not mandatory	# impulse	15 per polarity	
for DC GIS)	I _n / A	0	0
Superimposed impulse voltage test ("Uncharged" di- electric interfaces)	U _{DC} / kV	±550	Not existing
	t _{DC} / h	2	
	Û _{LI} / kV	±1550	
	Û _{SI} / kV	±1175	
	# impulse	15 per quadrant	
	I _n / A	0	
Insulation	U _{DC} / kV	±550	Not existing
system test	t _{DC} / h	> t ₉₀ = 120	
(Superimposed im-	Û _{LI} / kV	±1550	
pulse voltage test	Û _{SI} / kV	±1175	
with "charged" di- electric interfaces)	# impulse	3 per quadrant	
	I _n /A	5000	


Design and performance verification

Linear voltage distribution over complete length

Distribution of (a) Voltage potential (b) Electric field

- Identical transformation ratios of the resistance part and the capacitance part to reach a flat frequency response curve
- Low-inductance capacitor design to prevent any transient overvoltage phenomena
- Divider internal insulation material must prevent charge accumulation, otherwise surface discharge can occur during impulse superposition

Required frequency ranges

following the new upcoming standard CDV IEC 61869-1, Edition 2.0

Basic application

 Rated DC application: requires precise measurements from DC to 3kHz – Permanent (Metering, measuring, control applications – accuracy from ±0.1% up to ±3%)

Extended application

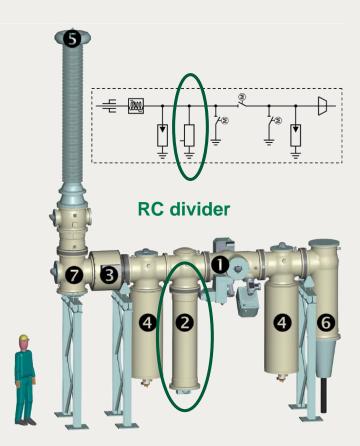
 Voltage monitoring application: up to 20kHz – Permanent (Power quality, ripple detection – accuracy from ±0,5% up to ±5%)

Advanced application

- Transient voltage monitoring:
- up to 500kHz for travelling wave detection application
- up to 1MHz or higher for switching impulse, lightning impulse detection

(Transient voltage detection – accuracy from $\pm 3\%$ up to $\pm 20\%$)

Experience in Diagnostic and Monitoring application


DC RC dividers in AIS application are in operation for more than *50 years* AC RC dividers in AIS application are in operation for at least *25 years*

Some examples of experience:

- Measurements of PQ parameters in many countries world-wide
- Measurements of transient voltages in DC substations
- Measurements of the ripple level in DC applications
- Measuring DC and AC voltages between power transformer and AC/DC converter (hybrid application)
- Measurements of superimposed DC voltages in AC grids f.e. in back-to-back substations
- First tests on Travelling wave detection by using voltage dividers

Conclusion

- Dimensioning GIS RC dividers acc. to IEC 61869-15 results in an insufficient design for the expected dielectric requirements during operation
- Considering composite voltages as described by CIGRE TB 842 has a significant impact on electrical & mechanical design principles of RC dividers
- Performance of the developed RC divider design has been proven by accuracy measurements, frequency response and composite voltage testing
- Although accuracy in amplitude and waveshape is limited, the designed RC divider can be used to even measure DC+LI composite voltages

