Paris Session 2022

Academia/Industry collaboration for the development of PD recognition tool

SC_{D1}

PS1 Q6 Would industry and academia working together more closely lead to new or improved algorithms?

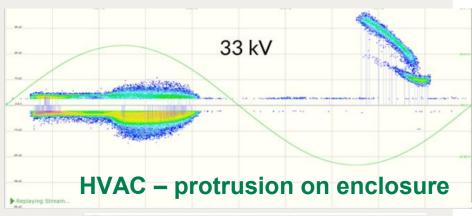
Matthieu Dalstein - France

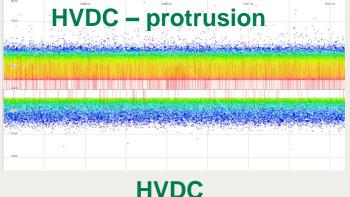
Group Discussion Meeting

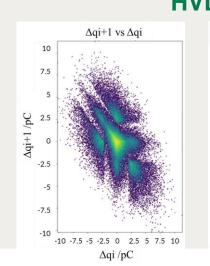
© CIGRE 2022

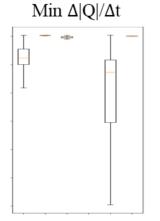
1

Context and objectives of developed tool


Context


- Diagnostic methods continuously improved but mainly for HVAC
- Development of HVDC lines and MTDC grids
- ⇒ Need of diagnostic methods for HVDC but only early stages for now and so require new research
- ⇒ Collaboration with Artificial Intelligence & Electrical engineering academic researchers from Ampere laboratory


Objective


- Development of new diagnostic methods
- Development of a diagnostic tool compatible with both HVAC and HVDC systems

Group Discussion Meeting

1 MIS1 2 MIS2 3 MIS3

Developed tool in collaboration with academics

Data processing :

- Sequences of time, amplitude and voltage
- With different types of sensor, on several defects

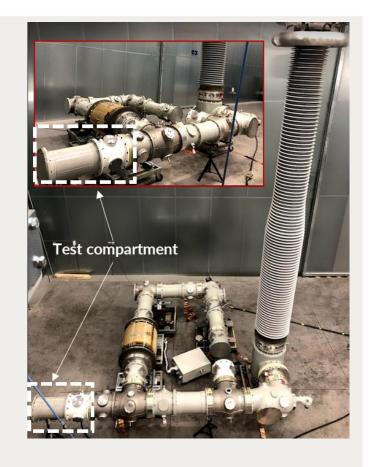
Training of classifier

- Application of training on selected classifier:
 k-nearest neighbors, support vectors, random forest...
- Optimization : quantities & type of parameters
 selected, values of hyperparameters of classifier

Optimization of k-nearest neighbors 1.5 1.5 1.5 2 1.5 90 70 80 70 Number of features

Recognition on unknown defects

Group Discussion Meeting


Application to HVDC GIS using experimental data

Data

- Real GIS
- 3 different defects

Defect type/class	Samples
floating-moving particle	5924
Particle on insulator	291
Protrusion	2249

Predicted True	floating-moving particle	Particle on insulator	Protrusion	Accuracy
floating- moving particle	3551	6	2	99,8%
Particle on insulator	2	167	1	98,2%
Protrusion	1	3	1346	99,7%

Results

- For 40% learning/ 60% validation
- With more than 8000 samples
- Very high accuracy (>98 %)

Conclusion

Would industry and academia working together more closely lead to new or improved algorithms?

Yes, academic/industry collaboration can lead to improved algorithm for instance, for new diagnostic methods.

These collaborations allow:

- Academics to access testing platform and on-site measurement
- Manufacturers to get insight of state-of-the-art findings of research