Paris Session 2022

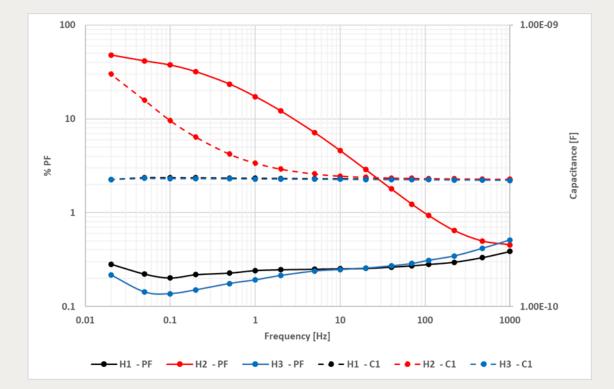
Effective Insulation Condition Assessment of HV and EHV Bushings under Critical Environmental and Operational Conditions

D1 Materials and Emerging Test Techniques PS1 – Testing, Monitoring and Diagnostics Question 10: What conclusions can be drawn from the results for use in the field of critical environmental and extreme operational conditions?

Diego M. Robalino - USA

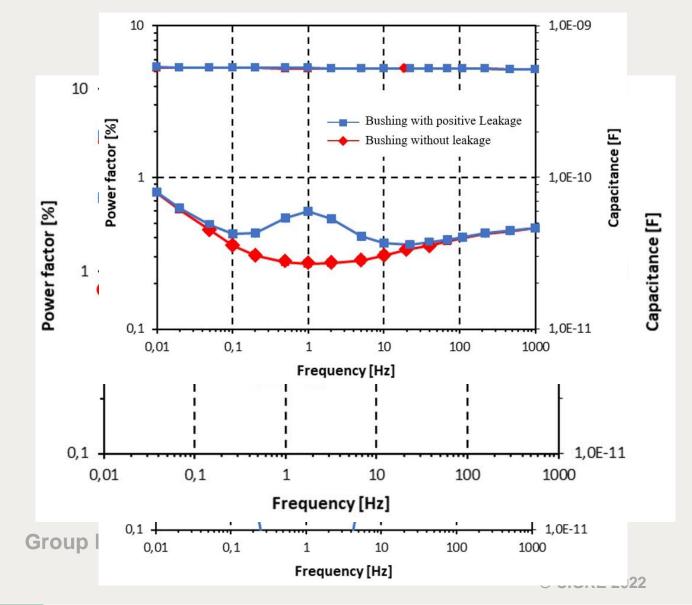
Group Discussion Meeting

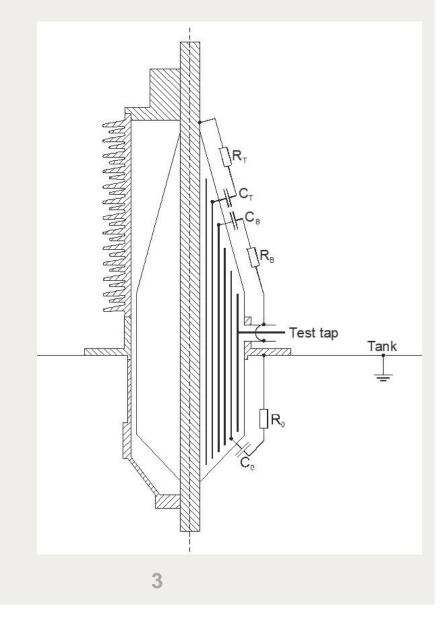
© CIGRE 2022


RE 2021

Assessment of HV and EHV bushing under critical operational and environmental conditions

•Thermal Conditions


- Use the Individual Temperature Correction algorithm (ITC) based on the Arrhenius equation to normalize the dielectric response to 20 °C.
 - Compare line-frequency (50 or 60 Hz) %DF measurement against the nameplate value on the bushing.
 - Analyze the 1 Hz normalized %DF value.


Bushing Insulation Condition	1 Hz DF at 20 °C
As new	0.2 - 0.4
Good	0.4 – 0.75
Aged	0.75 – 1.25
Investigate	> 1.25

© CIGRE 2022

Modeling and simulation of bushing surface leakage currents

Conclusions

The analysis of the DFR response on HV and EHV bushings has been extended. Validation limits have been provided at 1 Hz.

DFR allows for proper temperature correction using the Individual Temperature Correction (ITC) algorithm and different frequencies can be used for assessment (50/60 Hz and 1 Hz). Limits provided.

The model and examples provided in this paper help explain and understand the effect of leakage currents flowing in internal and/or external surfaces of an HV bushing

Addition or subtraction of losses in the dielectric response is possible and it is not a reason to condemn an HV bushing.

It is also recommended to use HV DFR (1400 Vrms) for specimens with a capacitance below 1 nF (especially under high EMI in the field).

DFR is a reliable insulation assessment tool capable to work in the field under critical environmental and operational conditions even at temperatures below 0 °C.

Group Discussion Meeting