



**OHitachi Energy** 

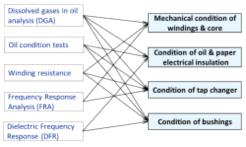
# **Study Committee A2**

Power Transformers and Reactors

## 10100\_2022

## Condition Assessment of HVDC converter transformers at limited time of outage applied to the Fenno–Skan 1 transmission system

Evgenii ERMAKOV<sup>1</sup>\*, Lena MELZER<sup>1</sup>, Tomas LINDSTEDT<sup>1</sup>, Niclas SCHÖNBORG<sup>2</sup>, Gert-Ove PERSSON<sup>2</sup>


<sup>1</sup>Hitachi Energy, <sup>2</sup>Swedish National Grid

#### Motivation

- After more than 30 years in operation it has become necessary to evaluate operational risks of the converter transformers and make a strategic decision on the possibility of extending their service lifetime.
- In the present study we describe key points to consider when performing condition assessment of HVDC converter transformers.

## Method/Approach

- Modern diagnostic tools addressing critical failure modes;
- · Evaluate parameters using specific thresholds if applicable;
- Take into account limitations on site.



# **Objects of investigation**

| Manufacturer                            | Hitachi<br>Energy<br>(former<br>ABB) |                                       |                      |                      |  |
|-----------------------------------------|--------------------------------------|---------------------------------------|----------------------|----------------------|--|
| Year                                    | 1988                                 |                                       |                      |                      |  |
| Cooling type                            | OFAF                                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                      |                      |  |
| Number of phases                        | 1                                    |                                       |                      |                      |  |
| Rated<br>Frequency                      | $50\mathrm{Hz}$                      |                                       |                      |                      |  |
| Terminals                               |                                      | Rated voltage<br>[kV]                 | Rated Power<br>[MVA] | Rated Current<br>[A] |  |
| A B<br>(AC winding)                     |                                      | $+\frac{405/\sqrt{3}}{-7} \ge 1.25\%$ | 194,6                | 680 - 832 -<br>913   |  |
| 2a 2b<br>(Y-connected Valve<br>winding) |                                      | 161,4/√3                              | 97,3                 | 1045                 |  |
| 3a 31<br>(∆- connecte                   | ,                                    |                                       |                      | 1045/√3              |  |

Dannebo Converter Station is served by 3 single-phase units.

#### Experimental setup & test results

| -                                                                   | •                                                                                                                                                                               |                                                                                                                                                                                                                                                                         |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Method<br>indicated an<br>abnormality                               | Detected abnormality                                                                                                                                                            | Recommendations for<br>remedial actions to maintain<br>short-term reliability                                                                                                                                                                                           |  |
| Winding<br>resistance                                               | Measured values are<br>acceptable. Suspected<br>early evidence of the<br>formation of an<br>oxidation film on the<br>contact surfaces                                           | The formed films are<br>generally removed by<br>switching the on-load tap<br>changer (OLTC) through its<br>full cycle thanks to the wiping<br>action of the moving contacts                                                                                             |  |
| Oil analysis<br>for the oil<br>from the<br>transformer<br>main tank | The results do not<br>indicate any abnormal<br>condition. Meanwhile<br>metal passivator content<br>has dropped below the<br>level that is normally<br>considered acceptable     | As a short-term solution,<br>addition of more passivator is<br>suitable. For continued long-<br>term operation oil reclaiming<br>or oil change may be more<br>suitable alternatives                                                                                     |  |
| DGA and<br>oil analysis<br>for the oil<br>from the<br>OLTC          | DGA results indicate an<br>incipient hot run in the<br>OLTC. Oil analysis<br>shows that the<br>breakdown voltage is<br>low and does not meet<br>the requirement of IEC<br>60422 | The oil in the diverter switch<br>tank should be changed. In<br>connection with this, a service<br>on the OLTC should also be<br>performed (as well as<br>checking the contacts).<br>An alternative solution is to<br>upgrade the diverter switches<br>to a vacuum type |  |
| Visual<br>inspection                                                | Oil leakages and<br>damaged paintwork<br>detected                                                                                                                               | Eliminate the oil leakages,<br>recover the paintwork                                                                                                                                                                                                                    |  |

#### Discussion

- As these converter transformers have been in service for more than 30 years, it was recommended to perform estimation of the paper insulation aging rate.
- If paper aging status is suitable, then to ensure transformers reliability for the upcoming 20 years, the manufacturer of the transformers has recommended:
  - A replacement program for the transformer bushings. Dry insulated bushings are recommended for replacement;
  - Upgrade OLTC diverter switches to a vacuum type;
  - Replacement of gaskets;
  - Replacement of transformer accessories which exceed expected lifetime (such as control cabinets, cabling, temperature indicators, pressure relay, Buchholz relay and others).

#### Conclusion

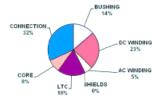
- Valuable information about condition status of the transformers has been obtained during challenging limited conditions thanks to close cooperation between the manufacturer of the transformers and the grid owner as well as to the set of modern diagnostic tools applied.
- The grid owner has received recommendations on how to improve short-term reliability of the transformers as well as how to keep them functioning properly. Suggestions were also given regarding the possibility to extend service lifetime.







**OHitachi Energy** 


## Study Committee A2 Power Transformers and Reactors

10100 2022

# Condition Assessment of HVDC converter transformers at limited time of outage applied to the Fenno–Skan 1 transmission system continued

## **Choosing diagnostic methods**

- HVDC transformers are specific in design as well as the operational stresses they face during operating life. This leads to differences in failure distribution by component and influences the choice of methods utilized for condition assessment
- HVDC-specific limitation factors on site:
  - DC terminals are located inside the valve hall, while AC terminals are outside. It was not possible to pull the test leads through the valve hall wall, therefore the measurements which require connection to AC and DC terminals at the same time were not applicable.
  - it was a problem to remove external connections from DC terminals which influenced the choice of methods utilized for condition assessment.
  - time for electric measurements was restricted to maximum one day per transformer



Failures of HVDC transformers by component 2003 -2012 [CIGRE Brochure 617, 2015 "HVDC LCC converter transformers. Converter transformer failure survey results from 2003 to 2012"]



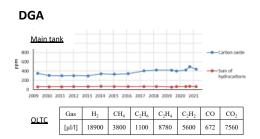
# Diagnostic Methods

| Туре                    |        | Method                                                                                    | Object                                                                                                                           |  |  |
|-------------------------|--------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cha                     | minel  | DGA (Dissolved Gas Analysis)                                                              | Electrical and/or thermal fault diagnosis                                                                                        |  |  |
| Chemical                |        | Oil condition tests                                                                       | Determination of oil condition                                                                                                   |  |  |
|                         |        | Winding resistance                                                                        | Detection of bad contacts, winding short circuits and interruptions                                                              |  |  |
|                         |        | Excitation current                                                                        | Problems associated with the core; indication of winding short circuits and interruptions                                        |  |  |
|                         | Basic  | Turns ratio                                                                               | Detection of winding short circuits and interruptions                                                                            |  |  |
| Electrical Advanced Ba: | Ba     | Insulation resistance                                                                     | Estimation of insulation condition, indication on moisture ingress, contamination, aging,                                        |  |  |
|                         |        | Capacitance and dissipation factor (tan $\delta)$ or $PF$                                 | etc.                                                                                                                             |  |  |
|                         |        | Short-Circuit Impedance                                                                   | Detection of winding short circuits and active part deformations                                                                 |  |  |
|                         | ped    | Sweep Frequency Response Analysis (SFRA)                                                  | Detection of winding short circuits and active part deformations – provides more accurate<br>information than basic measurements |  |  |
|                         | Advano | Dielectric Frequency Response (DFR), also<br>known as Frequency Domain Spectroscopy (FDS) | Estimation of insulation condition – provides more accurate information than basic measurements                                  |  |  |
|                         |        | Partial discharges (PD)                                                                   | Detection of weak spots inside the insulation system                                                                             |  |  |
| Acoustic                |        | Partial discharges (PD)                                                                   | Detection of weak spots inside the insulation system                                                                             |  |  |
|                         |        | Acoustic sound level                                                                      | Acoustic noise level of a transformer                                                                                            |  |  |
| Others                  |        | Theoretical paper ageing calculation                                                      | Determination of paper aging rate                                                                                                |  |  |
|                         |        | Thermography                                                                              | Detection of heat sources and hot spots                                                                                          |  |  |
|                         |        | Vibration signal analysis                                                                 | Mechanical properties of active part, accessories                                                                                |  |  |
| And other methods       |        |                                                                                           |                                                                                                                                  |  |  |

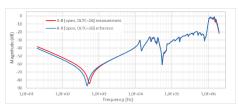
The more diagnostic methods that are included in the transformer condition assessment, the more accurate result is
expected. On the other hand, every additional method applied increase needed outage time, sometimes demands
additional measuring equipment, special experts, preparational work, etc. which may dramatically increase complicity of the
project and its costs.

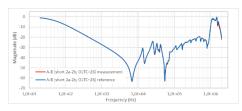
## http://www.cigre.org

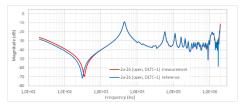


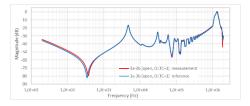



**@Hitachi Energy** 

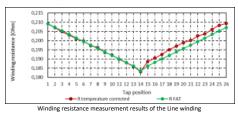

# Study Committee A2 Power Transformers and Reactors


#### 10100\_2022

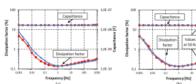

# Condition Assessment of HVDC converter transformers at limited time of outage applied to the Fenno–Skan 1 transmission system continued




#### SFRA measurement

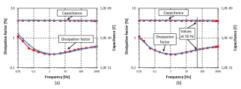







#### Winding resistance measurement




#### **DFR** measurement



DFR response of Line winding insulation (red) compared with the reference response from a sister unit (blue): (a) before temperature compensation; (b) after temperature compensation – normalized to 20 °

1.05-30



DFR response of a bushing of  $\Delta$ - connected Valve winding (red) compared with the reference response from a sister unit (blue): (a) before temperature compensation; (b) after temperature compensation – normalized to 20 °C

# Conclusion

- Since Dannebo Converter Station is served by 3 singlephase units of identical design, measurement results obtained on one unit can be used as a baseline for another one. This is very helpful especially for DFR and SFRA results interpretation.
- Valuable information about condition status of the transformers has been obtained during challenging limited conditions thanks to close cooperation between the manufacturer of the transformers and the grid owner as well as to the set of modern diagnostic tools applied.
- The grid owner has received recommendations on how to improve short-term reliability of the transformers as well as how to keep them functioning properly. Suggestions were also given regarding the possibility to extend service lifetime.