

OHitachi Energy

Study Committee A2

Power Transformers and Reactors

Paper ID 10256_2022

Reverse Power Flow Impacts for Legacy Power Transformers

Ed teNyenhuis Hitachi Energy Canada

Motivation

- Renewable generation and connection to existing power grids cause significant change to traditional flow of power
- Power can now flow in a different direction than the power grid and associated large power transformers were originally designed for
- Termed "reverse power flow" can have unintended and large negative consequences to power transformers
- Note that new transformers can always be designed for reverse power flow if specified

Method/Approach

- IEEE Standard C57.12.00-2015 states power transformers are to be designed for step down operation unless stated otherwise
- IEC Standard 60076-1-2011 states flow of power to be indicated at the time of transformer specification
- Many legacy transformers were thus designed for power flow in one direction only
- Focus of this paper is on transformer thermal constraints caused by the reverse power flow
- Show by modelling the revised leakage flux pattern and recalculating the winding and core temperatures
- Demonstrated with various cases

Objects of Investigation

- Impacts of reverse power flow best understood by changes to the transformer leakage flux pattern
- Used by engineers to calculate short circuit forces, transformer impedance and temperatures of winding hot spot / core outer packet / core tie plate / core clamp / tank / tank wall shield
- Reverse power flow can cause the leakage flux pattern to change dramatically and increase temperatures of winding hot spot, tie plates, core outer packets and core clamps

Discussion

- No difference with reverse power flow for simple 2 winding transformers (LV to HV, HV to LV)
- Can have large difference with reverse power if there are tap windings, extra voltage systems (i.e. TV or 2 LV's), or auto connection with LTC (very different leakage flux patterns and significant temperature increases in windings & core parts)
- Need to check accessories and tap extremes
- Loading scenarios (active and reactive power) should be examined
- · Higher harmonics can increase stray and eddy loss

Conclusion

- Reverse power flow a real concern for legacy transformers
- Power flow can change direction and relative amounts of active vs reactive power
- Cases with detailed thermal calculations showed examples of increased winding and core clamping temperatures for reverse power flow and harmonics
- Transformers with same electrical parameters can be affected very differently by reverse power due to different winding arrangement, core type and leakage flux control
- Possible impacts:
 - 1. Leakage flux patterns leading to temperature increase in the core, core clamping, tie plates
 - 2. Winding heating
 - 3. Limits to tapping range
 - 4. Reduction in nameplate rating for different loading scenarios
 - 5. Increased harmonics
 - 6. More rapid/frequent changes to temperature
- Recommend legacy transformers have an engineering study performed by the Original Equipment Manufacturer (OEM)

http://www.cigre.org

OHitachi Energy

Study Committee A2 Power Transformers and Reactors

Paper ID 10256_2022

Reverse Power Flow Impacts for Legacy Power Transformers continued

Case Study 1

- 125 MVA, 230 28 28 kV, on load taps on HV, designed for step down (HV to dual LV's)
- Leakage flux plots show strong radial flux lines between the 2 LV's in reverse power flow which led to very high core outer steel and tie plate temperatures.
- MVA would have to be reduced to 32% of rated (LV to LV) with all cooling in operation to keep core and tie plate temperatures to a safe limit

Figure 3 (a) - HV to both LV's (Real & Imaginary) (b) LV to LV (Real & Imaginary)

Case Study 2 -

- 125 MVA, 215 28 28 kV with on load taps in the HV, designed for step down (HV to dual LV's)
- Request to operate LV to LV and with high harmonics
- Load had to be reduced to 60% to operate safely

Case Study 3

- 125 MVA, 210 28 44 kV with off load taps in the HV – designed for step down (HV to LV's)
- Request to operate with step up and LV to LV
- Calculations showed it can operate at full load in reverse power flow due to shell form design
- Shell form core design is more flexible for reverse power flow

Case Study 4

- 83 MVA, 240 14.1 14.4 kV with on load taps in each LV, designed for step down where each LV could independently regulate the output voltage
- Reverse power flow load scenarios given (note they are much below 83 MVA) – all were found to be within allowed design limits

	LV1			LV2					HV
Scenario	P1	Q1	LVI	P2	Q2	LV2	PH	PH	H
	(MW)	MVAR	MVA	(MW)	MVAR	MVA	(MW)	MVAR	MVA
Original			41.5			41.5			83
1			(output)			(output)			(input)
	8	0	8	32.4	5.3	32.9	24.4	5.3	25
2	(imput)	(input)	(input)	(output)	(output)	(output)	(input)	(input)	(input)
	16	5	16.8	16	1	16	0	4	4
3	(input)	(input)	(input)	(output)	(output)	(output)	(outout)	(outout)	(output)
	20	4	20.4	10.2	4	10.9	9.8	0	9.8
4	(imput)	(input)	(input)	(output)	(output)	(output)	(output)	(output)	(output)

Case Study 5

- 83.3 MVA, 245 26 26 kV with on load taps in the HV, designed for step down operation
- Request for generation in LV1 (24 MVA) and output on LV2 (20 MVA) and the HV (4 MVA)
- Calculations showed core outer packets would overheat
- Had to reduce loads by 5% and only in winter (20C lower ambient)

Case Study 6

- 10 MVA, 230 13.8 kV with off load taps in the HV, designed for step down operation
- Request to operate in step up with high harmonic content (due to new generation on the LV system)
- Calculations showed 9 MVA was possible

http://www.cigre.org