

Study Committee A2

POWER TRANSFORMERS AND REACTORS

Paper ID: 10803

420 kV Shunt Reactors for Reactive Power Compensation Explaining the Trends Favoring Air-Core Dry-Type Technology

Alexander Gaun, Alex Grisenti, Bernhard Fröhlich, Christian Niederauer

Coil Innovation GmbH

Motivation

- Air-Core Dry-Type Reactors for reactive power compensation of high voltage transmission systems
- Comparison between iron-core liquid-immersed and air-core dry-type high voltage shunt reactors (HVSR)
- Application example with 420 kV air-core dry-type shunt reactors installed on the transmission network of a well-known German transmission system operator

Basic Design and Construction of Air-Core Dry-type HVSR

• Depending on the system voltage several of these stacks can be connected in series

Sustainable Circular Economy

 A sustainable circular economy builds on the sustainable resource base and aims to make the best possible use of the limited resources

Comparison between Oil- and Dry-Type Reactor Technology

- Air-core dry-type HVSRs have a lower degree of complexity than iron-core liquid-immersed HVSR
- Most of the materials used in both types can be recycled in a certain way. For air-core dry-type reactors up to 90 % of the used mass can be recycled
- Comparable in losses and

- Liquid-immersed HVSR require additional concrete for firewalls, cable ducts, oil containment, ...
- Air-core dry-type reactors have no saturation but an external magnetic field
- Reduced costs for spare parts, transportation and operation of air-core dry-type HVSR

HVSR Testing

- Loss-measurement for air-core dry-type reactors is different compared to iron-core liquid-immersed HVSR.
 - Measurement performed in metallic free environment at any voltage (extrapolated to U_r)
 - Conversion factor used to correct losses for coil windings measured in factory environment
- · Measurement of axial resonance

- Measurement of acoustic sound level according to IEC 60076-6 and IEC 60076-10
 - Voltage is generated with series resonant circuit
 - Reference measurement performed in outdoor environment
 - Routine tests in factory environment corrected according to ISO 3744

Study Committee A2 POWER TRANSFORMERS AND REACTORS

Paper ID: 10803

420 kV Shunt Reactors for Reactive Power Compensation Explaining the Trends Favoring Air-Core Dry-Type Technology continued

HVSR Single-Phase Arrangement

- Stacking of individual windings technically beneficial (coupling between units). One phase of 420 kV HVSR is composed of two series connected stacks
- More than two units should not be stacked due to mechanical reasons

HV	10.00			EV	
-		-	-	-	-
		111			
	10.00		10.00		11 11
A 8					

 Arrangement C combines advantages like fieldcancellations and thus reduced induced currents in the grounding grid, positive mutual coupling of the stacks, interchangeability and reduced stress on the support insulators

HVSR Three-Phase Arrangement

- Shift of the middle phase (scheme B) leads to a better fit of the phase arrangements (identical C2C-distances)
- Improves unbalance situation in side-by-side installations due to improved cancellation effects

Transient Voltage Considerations

 Non-linear transient voltage distribution, governed by capacitances (simplified electrical network)

Measurement and simulation show excellent accuracy

Conclusion

- Environmentally friendly and can be designed to even exceed existing technical requirements for conventional HVSR
- Benefits in terms of lead time, product standardization, spare parts management, thus reducing total cost of ownership
- For the specific project (see figure below) air-core drytype rectors are the preferred solution for reactive power compensation

