

Study Committee A2 Power transformers & reactors

Paper A2 10839 2022

DESIGN CHALLENGES FOR LARGE OFFSHORE WIND TURBINE TRANSFORMERS

Max GILLET (1), Christophe PERRIER (1), David MARNAY (1), Filippos MARKETOS (1), Murat KAVUK (2), Hasan YILDIZ (2), Tobias STIRL (3), Tirdad

BOROOMAND (4)

GE Grid Solutions - France (1) / Turkey (2) / Germany (3) / United Kingdom (4)

Motivation

- Numerous offshore wind farms projects are ongoing worldwide to support energy production decarbonization
- Large wind turbines, able to produce up to 15 MW, present a lot of design challenges caused by the enhancement in size and power of all its components
- This study aims at describing specific points under consideration when designing power transformers for large offshore wind turbine application

Method/Approach

- The present work focuses on main design challenges and solutions found by transformers manufacturer to provide reliable and efficient products for offshore wind farms application: 14MVA/66kV power transformer
- 1. Electrical design - Impact, evaluation and mitigation of harmonics
- 2. Mechanical design - Evaluation of external vibration withstand
- 3 Insulating liquids - Use of ester oils
- Eco-design and life cycle analysis 4.
- 5 Other design aspects

1/ Electrical design - Impact, evaluation and mitigation of harmonics

- Electrical design of large wind turbine transformer is different from standard onshore products implemented on electrical network
- Presence of converter between generator and transformer implies important harmonic content to flow in transformer

farm energy

Identified challenges

- Needs to deliver higher performances for various working points (active / reactive power, load profile, different coupling), with fluctuating THD
- Need to keep structure as compact/light as possible
- Avoid uncontrolled risks related to presence of harmonics (increase of losses, increase of hotspot temperature and impact on insulation lifetime)

Results/Discussion

- · Authors propose to study the impact of harmonics on active part design using electromagnetic Finite Element Method (FEM) tools
- Selection of winding configuration is a key point: loose coupling structures such as double concentric and twoline parallel designs are preferred for such applications

Leakage flux of 3-winding double Leakage flux of 3-winding axially concentric design (a): harmonics in-phase (b) in phase opposition (c) phase (b) in phase opposition (c)

stacked design (a): harmonics in-

Pros and cons for each design	Double concentric design	3 windings axially stacked
In-phase harmonics	-	+
In-phase opposition harmonics	+	-
Short circuit withstand	+	-
Local loss distribution	+	-
Compactness	-	+

As both options lead to viable technology, 3 windings axially stacked are preferred by manufacturer for weight and cost-effectiveness aspects

http://www.cigre.org

Power transformers & reactors Paper A2 10839 2022

DESIGN CHALLENGES FOR LARGE OFFSHORE WIND TURBINE TRANSFORMERS

continued

2/ Mechanical design – Evaluation of external vibration withstand

- Transformers installed in wind turbine nacelles are subjected to harsh vibratory environment during all lifetime
- Static and dynamic behavior of transformers needs to be assessed, for service conditions as well as for transport and maintenance operations specific to offshore environment

Identified challenges

- Qualify transformer for 25 years of use based on representative excitation (measured on a prototype) and integrating dynamical effects
- Avoid mechanical failure in all components, in particular for welds and bolted connections
- Keep structure as light and compact as possible

Results / Discussion

- Only available solution to evaluate mechanical withstand under external excitation is to perform mechanical FEM study
- 3 main verifications needs to be performed
- ✓ Absence of coincidence between nacelle main vibration modes and transformer's ones
- Structural withstand under transport and maintenance operation (short term)
- ✓ Structural withstand under service conditions

Example of fatiaue damage distribution before optimization for a given material type

- Initial mechanical design of transformer was found non-compliant with specified criteria
- Several evolutions were introduced considering FEM study results to improve the situation, notably:

- Reinforcements of all fixations of accessories attached to tank and of active parts fixations (internal to tank)
- Fine tuning of stiffness around transformer fixation points, to smoothly distribute vibratory energy and avoid concentration of stress in fragile components
- Adjustment of welds maps and bolted connections design to prevent any failure related to fatigue

Damaae plot in oil pipe and surroundinas before and after implementation of corrective solution

- After several iteration, technical solutions were found to validate transformer mechanical design for 25 years
- Validation of FE models can be done thanks to comparison between FE modal analysis and experimental modal analysis

3/ Insulating liquids

- Both mineral and ester oils can be used for offshore wind turbines transformers
- Ester oils present several advantages as a higher fire point, a better biodegradability and a higher thermal class
- Oxidation stability of ester (especially natural ester) is lower but transformer is protected in a box inside the nacelle, and a sealed system with rubber bag is used
- Synthetic ester was preferred because of better cooling performances in case of very cold climate (<-20°C)

<u>Transformer's position inside the nacelle, at the bottom right</u> (left), and conservator equipped with rubber bag (right)

http://www.cigre.org

Power transformers & reactors

Paper A2_10839_2022

DESIGN CHALLENGES FOR LARGE OFFSHORE WIND TURBINE TRANSFORMERS

continued

4/ Eco-design and life cycle analysis

- Life cycle analysis (LCA) permits to quantify impact of a product during its entire life cycle
- LCA is achieved by modelling transformer in dedicated tools, including all necessary aspects such as emissions in air, water and ground, energy consumption and materials resources
 - ✓ SIMAPRO software + ISO 14040 + ISO 14044
- Results are determined for 15 independent indicators

Diagram of the life cycle stage of a product

- As for standard power transformers, offshore wind turbine transformers are mostly impacting environment:
 - During the "use" phase due to electrical losses happening in core and windings
 - During the "material" phase, due to the steel production as tank and core (Human toxicity and the Freshwater ecotoxicity), and the use of high quantity of copper (Resource depletion)

5/ Other design aspects

- Transformer's maintenance operations are made complex in offshore application, in particular because it is installed at 150 m above sea level
- Transformer manufacturers need to reduce as much as possible the frequency and scope of maintenance operations
- Furthermore, the use of online monitoring systems allow continuous supervision of transformer health and permits to take quick decision without planning special control operation when an even occurs
- Transformer corrosion withstand has also to be considered during design stage. In Haliade-X project, choice has been made to install transformer in a climate-controlled enclosure inside the nacelle, reducing drastically the risk of corrosion due to humid and saline environment

Conclusion

- Design of nacelle-mounted transformers applied to offshore environment presents new challenges
- Use of finite element methodology analysis for both electrical and mechanical design activities is required
- Ester oil is the preferred option for better fire safety
- Strict limitation in dimensions and mass, in addition to harsh environment conditions is another challenge
- Other design aspects such as cooling means, corrosion withstand, maintenance operations or monitoring can be solved without major difficulty