

Power transformers and reactors

10842 2022

QUALIFICATION TEST FOR POWER TRANSFORMERS GIC CAPABILITY

M. RYADI, P. POUJADE, D. BORTOLOTTI, O. MOREAU, JT. MONTAVONT, E. ALVADO EDF, FRANCE J. RAITH, G. LEBER, M. STOESSL SIEMENS ENERGY, AUSTRIA

Motivation

- GIC (quasi-DC induced current), a consequence of solar storms, would have significant effects on power transformers (Saturation → harmonics and reactive power → Thermal challenges).
- National authorities ask utilities to assess the GIC risk and the vulnerability of their electrical installations
- In terms of standardized tests on transformers GIC capability, there is a lack of normative references
- To develop a special test to characterize the limits and the capability of a 570MVA GSU design to withstand such DC current components.
- To compare the simulation results and to focus on the most constrained components of the active part to optimize the instrumentation for the transformer GIC capability test in the manufacturer high-voltage lab.

Objects of investigation

- The characterisation of the electromagnetic behaviour of the transformer under DC component
- The qualification of the transformer thermal and mechanical performances under GIC stresses
- Mastering and understanding better the limits and hypothesis taken for the simulations to qualify the GIC capability of the transformers
- Put guidance for the future work on power transformer GIC capability test standards.

Thermal simulations and modelling of the transformer under GIC

Design data of the 570 MVA GSU transformer

Design characteristics	
Туре	Single-phase, oil immersed power transformer
Rated power/ voltage HV	570 MVA/405/√3 kV ± 2.47%
Frequency	50 Hz
Core type	4-leg core
Number of wounded legs	2

Geometrical data for Finite Elements simulations

Results: Losses calculations

Losses (W) in tie bar versus DC component

http://www.cigre.org

Study Committee A2

Power transformers and reactors

10842_2022

QUALIFICATION TEST FOR POWER TRANSFORMERS GIC CAPABILITY

continued

Temperature rise evaluation by simulation/Results:

force with a decrease of 20% to 30%

GIC test circuit

Back-to-back configuration for single phase units:

Temperature sensors locations for GIC capability test

The sensor locations in the 570 MVA transformer are as follows:

- ✓ Tie bar surface in the axial center
- \checkmark Tie bar surface in the height of upper core limb end
- ✓ Clamping plate/beam
- ✓ Smallest core package in axial center
- ✓ Smallest core package on top
- Top of the smallest core package oil duct

http://www.cigre.org

Study Committee A2

Power transformers and reactors

10842_2022

QUALIFICATION TEST FOR POWER TRANSFORMERS GIC CAPABILITY

continued

GIC test sequence

Reactive power evolution versus DC component

Significant increase of the reactive power consumption:

Characterization of the excitation current harmonics

A significant increase of the even harmonics in the current spectrum:

Core and structural part temperature measurements under GIC

Test voltage and current under 25Amps DC components:

Core and structural part mechanical behavior under GIC

Tank vibrations and generated noise increase depending on the GIC magnitude:

Conclusion

- The transformer GIC capability can be demonstrated by a computational approach supported by a special test at the manufacturer's test bay.
- Although the back-to-back test is not completely representative of the operating conditions, the obtained test results allow the validation and evaluation of the performed simulations with the used calculation model.
- Mechanical impact of GIC evaluation requires test when the simulations seems difficult and heavy to perform.
- The first data are available to support the standardization.

http://www.cigre.org