

Study Committee A3 Transmission and Distribution Equipment Paper 10102_2022

SF6-free Solutions for 420 kV Networks using Gas-Insulated Substation (GIS)

Matt BARNETT¹ Bertrand PORTAL², Samuel SOUCHAL², Quentin ROGNARD², Arnaud FICHEUX² ¹ SSEN Transmission, United Kingdom, ² GE Grid Solutions, France

Introduction

- Delivery of net zero brings challenges to the electricity industry beyond generation: transmission asset owners must also consider own CO₂e emission. SF₆ is a key part of this.
- SSEN Transmission have a science-based target that includes tackling SF₆ emissions and a policy to avoid SF₆ wherever technical and commercially viable.

Technical Performance and Reliability

- Environmental case clear, but no technical benefit expected
- Critical to have confidence that SF₆-free has equivalent performance – in both short and long term – as SF₆
- The technical development and testing explained later
- Ratings aligned to requirements
- Change of gas clearly significant but many elements are either not materially affected by this change or the change can easily be handled by during the design and testing process
- Own experience with SF₆ alternatives:

420 kV Development

- Close collaboration and knowledge sharing
- · Credible development plan and experience
- Risk mitigations, especially for CB

Operational Issues

- New challenges from different gases / mixtures
- Not to be overlooked but overcome with correct mitigations (some examples to follow)

Overall Selection

- Sufficient confidence to consider SF₆-free GIS as "third option" alongside AIS and SF₆ GIS
- Holistic evaluation: footprint, programme, cost, CO₂e impact, technical risk for project and lifetime etc.

Technical Specification

- Built on IEC standards but address "gaps" and specific needs
- GWP ≤ 1000
 - Technical requirements eg
 - cable terminations
 - electrical endurance / gas composition
- Monitoring
- Operational requirements
- Health / EHS
- Not overlook usual requirements from SF₆

http://www.cigre.org

Study Committee A3

Transmission and Distribution Equipment

Paper 10102_2022

SF6-free Solutions for 420 kV Networks using Gas-Insulated

Substation (GIS)

Matt BARNETT $^1\,$ Bertrand PORTAL 2 , Samuel SOUCHAL 2 , Quentin ROGNARD 2 , Arnaud FICHEUX 2

¹ SSEN Transmission, United Kingdom, ² GE Grid Solutions, France

DEVELOPMENT OF 420 KV GIS

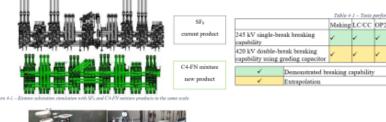
Gas selection for the GIS

5% mol C_4F_7N / 13% mol O_2 / 82% mol CO_2 mixture is defined for -25°C GIS applications and therefore used for the development of this 420kV SF₆-free GIS.

Development of the GIS bay

- Keep the overall dimensions of the GIS equipment as designed today with SF6 gas.
- Keep high level of accessibility and ergonomics for operation, maintenance and repair
- Performances validated for dielectric, continuous current, capacitive, bus transfer and induced current

Development of the GIS circuit-breaker

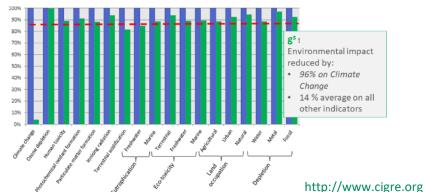

- Tests done to validate 245 kV 63 kA single-break performances
- Extrapolation of this chamber to be used as 420 kV double-break CB
- Dielectric test already performed on full 420 kV CB

d on CB

T10

T30

 Test campaign on-going to fully validate the breaking performance on the complete doublebreak CB



L75

T100a T100s

EHS assessment of the 420 kV GIS solution

- Ful LCA evaluation to assess impact of the complete CO₂e footprint and not just focusing on the gas
- Example of Life Cycle Assessment (LCA) comparison for GIL 420 kV SF₆ in blue versus C4-FN mixture in green:

Study Committee A3

Transmission and Distribution Equipment

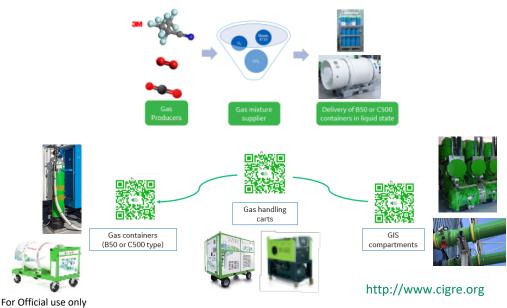
Paper 10102_2022

SF6-free Solutions for 420 kV Networks using Gas-Insulated

Substation (GIS) Matt BARNETT¹ Bertrand PORTAL², Samuel SOUCHAL², Quentin ROGNARD², Arnaud FICHEUX²

¹ SSEN Transmission, United Kingdom, ² GE Grid Solutions, France

EASE OF GAS HANDLING PROCESS ON SITE


User's expectations

- Unique identification of mixtures and no use of manufactures' brand or trade names
- Explicit labelling with details of the gas or gas mixture used (type, ratio)
- Mandating types of filling point with proposed following table (in discussion within IEC TC 17 committee)
- Always possible to obtain pre-mixed bottles for maintenance / top-up activities

Gas / Gas Mixture	Colour	RAL	Connection
SF ₆	Pure Orange	2004	DN8 with M26 thread or DN20 with M45 thread
N2 / O2 mixtures	Light Blue	5012	DN20 with M50 thread
Mixtures containing C4-FN (C4F7N)	Yellow Green	6018	DN8 with M28 thread or DN20 with M48 thread
Mixtures containing C5-FK (C5F10N)	Telemagenta	4010	DN8 with M24 thread or DN20 with M43 thread
CO ₂ / O ₂ mixtures	Dusty Grey	7037	Malmquist valve with M32 thread

Manufacturer's solutions

- Use of pre-mixed gases in containers like B50 bottles or C500 container
- Specific SF₆-free gas handling gas carts developed by gas cart manufactures
- Training program in place on the different tools to be used
- Development in progress with gas cart manufacturers of specific QR code and labelling to facilitate site operations

