





Transmission and Distribution Equipment

Paper 10440\_2022

#### Health Indexing and Reliability Assessment of EHV SF6 Circuit Breaker

\*Sourav ADHYA1 Adani Transmission Ltd, INDIA Sourav.adhya@adani.com Nihar RAJ2 Adani Transmission Ltd, INDIA Nihar.raj@adani.com Sanjay BHATT Adani Transmission Ltd, INDIA Sanjay.bhatt@adani.com

#### **Motivation :**

Reliability assessment and life cycle enhancement of EHV SF6 circuit breaker fleet through a single health model is challenging as the condition assessment rules, limiting guideline for different parameter varies with different OEM.

There was a need of solution, that doesn't require any investment on additional sensorization. Solution should utilize all available maintenance, testing data and help in Run, Repair, Replacement decision.

### Method / Approach:

A unified rule-based health indexing engine is developed which can accommodate circuit breaker operational, fault data and all critical condition monitoring parameters to evaluate the health score.

The model is applicable for 400KV and above voltage level spring operated SF6 circuit breakers. The same can be used by utility irrespective of circuit breaker manufacturer. Step wise procedure illustrated here.

#### Parameters For CB Health Model:

Selection of parameters depends upon circuit breaker technology, mechanism type and application. It should provide significant information about the overall equipment health. Health indexing model input parameters shown below.

- General information inputs: 1) asset ageing, 2) last maintenance history, 3) last overhauling history 4) user experience with different OEM.
- CB operational life inputs: 5) Normal operational count, 6) Fault operation count 7) Cumulative short circuit count into model.
- CB dielectric health inputs: 8) Capacitance and tan delta of grading capacitor (if available), 9) SF6 dew point, 10) SF6 moisture content, 11) SF6 pressure and 12) SF6 purity.
- CB Operating mechanism and contact wear and tear issues inputs: 13) mechanism Closing time, 14) Opening time, 15) Closing time discrepancy within phases, 16) Opening time discrepancy within phases, 17) Close velocity, 18) Open Velocity, 19) Closing coil resistance 20) Opening coil resistance.
- Power contact as subsystem inputs: 21) Static contact resistance (main contact), 22) Contact and conductor temperature (thermo-vision scanning) and 23) Auxiliary Contact erosion.

### **Conditional Grading Of Parameters:**

Conditional grading applied to 23 number of health parameters, categorized as Good, Fair, Alarm, Critical and Replace. The scoring system allotted to convert condition into score ranged from "0" to "4".

|                                                                                      | Table-1 Conditional grading rule |                                                                          |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|--|--|--|
|                                                                                      | 4 - GOOD                         | Asset is healthy from operational and CBM<br>aspect. Normal maintenance. |  |  |  |
| 3 - FAIR Deterioration observed in health parame violating limit. Normal maintenance |                                  |                                                                          |  |  |  |
|                                                                                      | 2 - ALARM                        | CBM test results violating limit. Increase<br>maintenance frequency.     |  |  |  |
|                                                                                      | 1 - CRITICAL                     | Deteriorated health. Start planning process to replace or rebuild.       |  |  |  |
| For Of                                                                               | 0 - REPLACE                      | End of life. Immediately replace or rebuild.                             |  |  |  |

Conditional grading approach of all input parameters are illustrated in table-2 to 11.

Table-2 Scoring System for CB general information factor

| Agei<br>(Ye | ng in<br>ars) | Numbe<br>opera<br>(Nor | er of CB<br>tion*<br>mal) | Num<br>C<br>oper<br>(Fa | ber of<br>B<br>ation<br>ult) | f Time Since Time Since<br>last Last<br>maintenanc Overhaul<br>e (Years) (years) |     | Conditio<br>n Score |     |   |
|-------------|---------------|------------------------|---------------------------|-------------------------|------------------------------|----------------------------------------------------------------------------------|-----|---------------------|-----|---|
| Min         | Max           | Min                    | Max                       | Min                     | Max                          | Min                                                                              | Max | Min                 | Max |   |
| 0           | 5             | 0                      | 2500                      | 0                       | 3                            | 0                                                                                | 0.8 | 0                   | 4   | 4 |
| 5           | 10            | 2500                   | 5000                      | 3                       | 5                            | 0.8                                                                              | 1   | 4                   | 4.5 | 3 |
| 11          | 20            | 5000                   | 7500                      | 5                       | 8                            | 1                                                                                | 1.5 | 4.5                 | 5   | 2 |
| 21          | 30            | 7500                   | 10000                     | 8                       | 10                           | 1.5                                                                              | 2   | 5                   | 7   | 1 |
| 31          | 00            | 10000                  | 00                        | 10                      | 00                           | 2                                                                                | 00  | 7                   | 00  | 0 |

Note: \*M2 duty cycle i.e. 10,000 no load operation considered. For M1 duty cycle i.e. 8,000 no load operation, conditional grading to be prepared accordingly

In addition to fault operation count, fault current plays major role to decide on health of circuit breaker contact life. cumulative short circuit value is to be calculated and checked against the limit of 20,000\* to decide on maintenance action.

#### Table-3 Sample overhauling & electrical life expectancy criterion

| Overhaul (Criteria) |                             |                               |                                | Electrical Life ΣnxI2               |                                   |                                        |                                               |  |
|---------------------|-----------------------------|-------------------------------|--------------------------------|-------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------------|--|
|                     | Technology                  | Time<br>Based<br>(Years)<br># | Mechanical<br>operation<br>(N) | Electric<br>al<br>operati<br>on (n) | Rated<br>Fault<br>current<br>(KA) | At<br>Rated<br>fault<br>current<br>(n) | At 50%<br>of rated<br>fault<br>current<br>(n) |  |
|                     | SF6/Spring<br>type-1 72.5kV | 10                            | 10,000                         | 2,000                               | 31.5                              | 8                                      | 32                                            |  |
|                     | SF6/Spring<br>type-2 132kV  | 10                            | 10,000                         | 2,000                               | 40                                | 13                                     | 50                                            |  |
| SF6<br>typ          | SF6/Spring<br>type-3 245kV  | 10                            | 10,000                         | 2,000                               | 50                                | 8                                      | 32                                            |  |
|                     | SF6/Spring                  | 10                            | 10,000                         | 2,000                               | 50                                | 8                                      | 32                                            |  |

Note: for type1,2,3 72,5-245kV: $\Sigma$  n x I^2 = 20,000, for type-4 420-550kV : $\Sigma$  n x I^1.9 = 20,000; where n = number of short-circuits, I = short-circuit current, kA (R).

#### Table-4 Scoring System for GC, SF6 moisture condition

| S<br>Moi<br>Con<br>(PF | SF6<br>Moisture<br>Content<br>(PPM) |     | % Tan delta<br>of Grading<br>capacitor<br>(%) |       | % Deviation in<br>Capacitance of<br>grading<br>capacitor (%)* |   |
|------------------------|-------------------------------------|-----|-----------------------------------------------|-------|---------------------------------------------------------------|---|
| Min                    | Max                                 | Min | Max                                           | Min   | Max                                                           |   |
| 0                      | 120                                 | 0   | 0.2                                           | -2.50 | 5                                                             | 4 |
| 120                    | 210                                 | 0.2 | 0.4                                           | -5    | -2.50                                                         | 3 |
| 210                    | 300                                 | 0.4 | 0.5                                           | 5     | 10                                                            | 2 |
| 300                    | 330                                 | 0.5 | 0.7                                           | <-5   |                                                               | 1 |
| 330                    | 00                                  | 0.7 | ~                                             | >+1   | L0%                                                           | 0 |

Note: a) \* % Deviation from benchmark result (commissioning result) for grading capacitor capacitance. b) Loss factor measurement (tanδ) value as per CIGRE TB 368

Table-5 Scoring System for dielectric (SF6) condition

| S<br>Pre<br>(E | iF6<br>ssure<br>Bar) | SF6  <br>(1 | Purity<br>%) | SF6 Dew point<br>(°C) |     | Condition<br>Score |
|----------------|----------------------|-------------|--------------|-----------------------|-----|--------------------|
| Min            | Max                  | Min         | Max          | Min                   | Max |                    |
| 7              | 00                   | 99          | 100          | - 00                  | -40 | 4                  |
| 6.5            | 7.0                  | 98          | 99           | -40                   | -35 | 3                  |
| 6              | 6.5                  | 97          | 98           | -35                   | -30 | 2                  |
|                |                      | 94          | 97           | -30                   | -26 | 1                  |
| 0              | 6                    | 0           | 94           | -26                   | 00  | 0                  |

http://www.cigre.org







Paper 10440 2022

# Health Indexing and Reliability Assessment of EHV SF6 Circuit Breaker continued

Table-6 Scoring System for Closing & Opening time deviation

| Condition<br>Score | ne deviation<br>mark results<br>s)** | Opening tin<br>from bench<br>(ms | Closing time deviation<br>from benchmark results<br>(ms)* |      |  |
|--------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------|------|--|
|                    | Max                                  | Min                              | Max                                                       | Min  |  |
| 4                  | +1.5                                 | -1.5                             | +1.5                                                      | -1.5 |  |
|                    | -1.5                                 | -3.0                             | -1.5                                                      | -3.0 |  |
| 3                  | +3.0                                 | +1.5                             | +3.0                                                      | +1.5 |  |
|                    | -                                    | _                                | -3                                                        | -5   |  |
| 2                  |                                      |                                  | +5                                                        | +3   |  |
|                    | -3                                   | <                                | <-5                                                       |      |  |
| 1                  | +3                                   | >                                | -5                                                        | >    |  |

Note: a) \*Closing time, \*\*Opening time deviation from benchmark result is the deviation from Commissioning or last overhauling test report.

Table-7 Scoring System for Closing & Opening time discrepancy within phases

| Closing time discrepancy<br>with in phases (ms)*** |     | Openir<br>discrepan<br>phases ( | Condition<br>Score |   |
|----------------------------------------------------|-----|---------------------------------|--------------------|---|
| Min                                                | Max | Min                             | Max                |   |
| 0                                                  | 3   | 0                               | 3                  | 4 |
| 3                                                  | 5   | 3                               | 3.33               | 2 |
| >                                                  | 5   | > 3                             | 1                  |   |

# Table-8 Scoring System for Close velocity & Open velocity deviation

| Condition<br>Score | velocity<br>on from<br>rk results<br>**** | Opening<br>deviatio<br>benchma<br>(m/s) | Close velocity deviation<br>from benchmark results<br>(m/s)*** |       |  |
|--------------------|-------------------------------------------|-----------------------------------------|----------------------------------------------------------------|-------|--|
|                    | Max                                       | Min                                     | Max                                                            | Min   |  |
| 4                  | +0.15                                     | -0.15                                   | +0.15                                                          | -0.15 |  |
| 3                  | -0.15                                     | -0.30                                   | -0.15                                                          | -0.30 |  |
| 3                  | +0.30                                     | +0.15                                   | +0.30                                                          | +0.15 |  |
|                    | .30                                       | <- 0                                    | <- 0.30                                                        |       |  |
| 1                  | 0.30                                      | >+ (                                    | >+ 0.30                                                        |       |  |

Note: a) \*\*\*Close velocity (m/s) deviation from benchmark result (Commissioning or last overhauling test report). b) \*\*\*\*Opening velocity (m/s) deviation from benchmark result (Commissioning or last overhauling test report).

Table-9 Scoring System for Closing & Opening coil resistance deviation

| Closing coi<br>deviation<br>benchmark | l resistance<br>in % from<br>results (%)* | Opening co<br>deviation<br>benchmark i | Condition<br>Score |     |
|---------------------------------------|-------------------------------------------|----------------------------------------|--------------------|-----|
| Min                                   | Max                                       | Min                                    | Max                |     |
| -5%                                   | +5%                                       | -5%                                    | +5%                | 4   |
| -10%                                  | -5%                                       | -10%                                   | -5%                | 2   |
| +5%                                   | +10%                                      | +5%                                    | +10%               | 2   |
| <- 1                                  | 10%                                       | <- 1                                   |                    |     |
| >+ 2                                  | 10%                                       | >+ 2                                   | 10%                | U U |

Note: a) \*Closing coil resistance deviation from benchmark result (Commissioning or last overhauling report). b) \*\*Opening coil resistance deviation from benchmark result (Commissioning or last overhauling report).

| Table-10 Scoring System for main contact resistar | ice, Aux |
|---------------------------------------------------|----------|
| contact resistance and contact temperature dev    | /iation  |

| N<br>co<br>resi<br>dev<br>in p<br>(p | Nain<br>ntact<br>istance<br>viation<br>er unit<br>o.u.)* | Auxili<br>conta<br>resista<br>DCRM<br>in mic<br>ohm ( | ary<br>act<br>ince<br>test<br>cro<br>μΩ) | Temperature<br>difference (Δt)<br>based on<br>comparisons<br>between similar<br>components of CB<br>under similar<br>loading in °C |     | Condition<br>Score |  |
|--------------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|--|
| Min                                  | Max                                                      | Min                                                   | Max                                      | Min                                                                                                                                | Max |                    |  |
| 0                                    | 1                                                        | 0                                                     | 150                                      | 0                                                                                                                                  | 3   | 4                  |  |
| 1                                    | 1.2                                                      | 150                                                   | 200                                      | 4                                                                                                                                  | 10  | 3                  |  |
| 1.2                                  | 1.3                                                      | 200                                                   | 500                                      | 11                                                                                                                                 | 15  | 2                  |  |
| 1.3                                  | 1.4                                                      | 500                                                   | 1000                                     | 15                                                                                                                                 | 00  | 1                  |  |
| 14                                   | 00                                                       | 1000                                                  | 00                                       |                                                                                                                                    |     |                    |  |

Note: a) \*Main contact resistance deviation from benchmark results in per unit (p.u.) is equal to = (Present CRM value / Commissioning or last overhauling CRM value). b) Main contact resistance higher than 75  $\mu\Omega$ require OEM's intervention for overhauling of interrupter.

# Assignment of weightage (typical):

Table-11 Typical Weightage system for EHV SF6 CB

| Sr.<br>No. | Monitoring parameters                     | Weight<br>K= (Wi) |
|------------|-------------------------------------------|-------------------|
| 1          | Ageing                                    | 2                 |
| 2          | User experience with CB type              | 1                 |
| 3          | Number of CB operation (Normal)           | 4                 |
| 4          | Number of CB operation (Fault)            | 5                 |
| 5          | Time Since Last Maintenance               | 2                 |
| 6          | Time Since Last Overhaul                  | 1                 |
| 7          | Capacitance of grading capacitor          | 4                 |
| 8          | Tan delta of grading capacitor            | 6                 |
| 9          | SF6 Moisture Content                      | 1                 |
| 10         | SF6 Pressure                              | 3                 |
| 11         | SF6 Purity                                | 1                 |
| 12         | SF6 dew point at atmospheric pressure     | 4                 |
| 13         | Close time                                | 8                 |
| 14         | Closing time discrepancy within phases    | 5                 |
| 15         | Open time                                 | 8                 |
| 16         | Opening time discrepancy within<br>phases | 5                 |
| 17         | Close Velocity                            | 4                 |
| 18         | Open Velocity                             | 4                 |
| 19         | Closing coil resistance                   | 5                 |
| 20         | Tripping coil resistance                  | 5                 |
| 21         | Contact Resistance                        | 8                 |
| 22         | Contact & Conductor temperature           | 4                 |
| 23         | Auxiliary Contact erosion                 | 10                |

### Health score evaluation:

A quantified scoring system is used to represent the circuit breaker health. The total HI of CB is as proposed in figure below.

| CB Conditional<br>parameter - 1              | Data flow Assessment<br>Module | Condition<br>Score (S) | Weightige (W) | (S <sub>0</sub> ) * (W <sub>1</sub> ) * | Σ                                                                                                                               |  |
|----------------------------------------------|--------------------------------|------------------------|---------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| CB Conditional<br>parameter - n              |                                |                        | -             | (S <sub>1</sub> )* (W <sub>1</sub> )    | $\Omega = \frac{\sum\limits_{k=1}^{N} \lambda_{i} \mathbf{H} \mathbf{r}_{i}}{\sum\limits_{j=1}^{N} \lambda_{j} \mathbf{r}_{j}}$ |  |
| Simula Decase flow for books and such as the |                                |                        |               |                                         |                                                                                                                                 |  |

Figure:1 Process flow for health score evaluation

A calculation of the overall Health Index is performed, where 100% represents excellent health and less than 30% represents "poor" health. Total scores are used for trend analysis. For each component, the health index calculation involves dividing its total condition score by its maximum condition score, then multiplying by 100.

### http://www.cigre.org







#### Paper 10440 2022

# Health Indexing and Reliability Assessment of EHV SF6 Circuit Breaker continued

Considering all the discussed parameters and factors, the total HI score of CB is calculated. Interpretation to be done as per table below

#### Table-12 Health score interpretation

| Health<br>Index score | Required Action Plan                                                                                        | Reliability<br>status |
|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|
| 85 - 100              | Normal Maintenance                                                                                          | Good                  |
| 70 - 85               | Increased monitoring and<br>normal Maintenance                                                              | Fair                  |
| 50 - 70               | Increase diagnostic testing,<br>possible remedial work or<br>replacement needed<br>depending on criticality | Alarm                 |
| 30 - 50               | Start planning process to<br>replace or rebuild considering<br>risk and consequences of<br>failure          | Critical              |
| 0 - 30                | Immediately assess risk;<br>replace or rebuild based on<br>assessment                                       | Replace               |

# Deterioration in important condition monitoring function:

The circuit breaker condition assessment function, consists of some key health indicators which could impact the asset management strategy.

|            |                                    | Health Status |      |       |          |          |
|------------|------------------------------------|---------------|------|-------|----------|----------|
|            | Score                              | 4             | 3    | 2     | 1        | 0        |
| Sr.<br>No. | Parameter Name                     |               |      |       |          |          |
| 1          | Number of CB<br>operation (Normal) | Good          | Fair | Alarm | Critical | Replace  |
| 2          | Number of CB<br>operation (Fault)  | Good          | Fair | Alarm | Critical | Replace  |
| 3          | Time Since Last<br>Maintenance     | Good          | Fair | Alarm | Alarm    | Alarm    |
| 4          | Capacitance of GC                  | Good          | Fair | Alarm | Replace  | Replace  |
| 5          | Tan delta of GC                    | Good          | Fair | Alarm | Critical | Critical |
| 6          | SF6 Pressure                       | Good          | Fair | Alarm | Critical | Replace  |
| 7          | SF6 dew point                      | Good          | Fair | Alarm | Critical | Critical |
| 8          | Close time                         | Good          | Fair | Alarm | Critical | Critical |
| 9          | Closing time<br>discrepancy        | Good          | Fair | Alarm | Critical | Critical |
| 10         | Open time                          | Good          | Fair | Alarm | Critical | Critical |
| 11         | Opening time<br>discrepancy        | Good          | Fair | Alarm | Critical | Critical |
| 12         | Close Velocity                     | Good          | Fair | Alarm | Alarm    | Alarm    |
| 13         | Open Velocity                      | Good          | Fair | Alarm | Alarm    | Alarm    |
| 14         | Closing coil<br>resistance         | Good          | Fair | Alarm | Replace  | Replace  |
| 15         | Tripping coil<br>resistance        | Good          | Fair | Alarm | Replace  | Replace  |
| 16         | Contact Resistance                 | Good          | Fair | Alarm | Critical | Replace  |
| 17         | Contact<br>temperature             | Good          | Fair | Alarm | Critical | Replace  |
| 18         | Contact erosion                    | Good          | Fair | Alarm | Critical | Replace  |

Table-13 Interpretation of Condition Monitoring Function

### CB final health status evaluation:

**Step-1**: Health score falling in different health zone as per Figure-1 equation and Table 12 to be considered as overall health status of asset.

**Step-2:** In addition to step-1, health status based on different condition monitoring parameter as per Table 13 to be evaluated.

**Step-3:** Asset health status as per Step-1, 2 to be reviewed and most severe status to be considered as final asset health status.

#### Case study-1:

Degradation of Power Contact (Main & Arcing) in 400kV Circuit Breaker: In 400KV switching station Y Pole of CB was identified with low health score 62, health status 'REPLACE' category. During further investigation it was observed that the CB has experienced higher number of fault and AR operation, due to which the Auxiliary contact resistance found on higher side in DCRM. The erosion even started impacting main contact resistance.

Complete overhauling of interrupter pole and drive mechanism, replacement of worn-out contact ensured. After overhauling health score improved to 97.5 from 62. Health category improved from '**REPLACE'** to '**FAIR'**. Timely action could avoid potential failure, power interruption, enhance asset security, safety and avoid costly repairs

#### Table-14 Y pole of CB Health score & Health status

|                                             | Before Overnauling |                 |            |                  |
|---------------------------------------------|--------------------|-----------------|------------|------------------|
|                                             |                    | Health<br>score | 62         | REPLACE          |
| Diagnostic Techniques                       | иом                | Values          | Score      | Health<br>status |
| Age                                         | years              | 10              | 3          |                  |
| Experience with CB<br>type                  |                    | 0               | 4          |                  |
| Number of CB<br>operation (Normal)          | No.                | 1006            | 4          | GOOD             |
| Number of CB<br>operation (Fault)           | No.                | 12              | 0          | REPLACE          |
| Capacitance of GC                           | pF                 | 1700            | 4          | GOOD             |
| Contact Resistance<br>(Present value)       | μΩ                 | 67.2            | 0          | REPLACE          |
| Contact & Conductor<br>temperature (Δ rise) | °C                 | 2               | 4          | GOOD             |
| Tan delta of GC                             | %                  | 0.1             | 4          | GOOD             |
| Contact erosion<br>(Auxiliary contact)      | μΩ                 | 1245            | 0          | REPLACE          |
| Time Since Last<br>Maintenance              | years              | 0.01            | 4          | GOOD             |
| Time Since Last<br>Overhaul                 | years              | 10              | 0          |                  |
| Close time                                  |                    | 60              | 3          | FAIR             |
| Close time discripancy                      |                    | 1.2             | 4          | GOOD             |
| Open time                                   |                    | 22              | 4          | GOOD             |
| Open time discripancy                       |                    | 0.4             | 4          | GOOD             |
| Close Velocity                              | M/se<br>c          | 2.58            | 0          | ALARM            |
| Open Velocity                               | M/se<br>c          | 4.51            | 0          | ALARM            |
| SF6 Moisture Content                        | μL/L               | 100             | 4          |                  |
| SF6 Pressure                                | bar                | 7.19            | 4          | GOOD             |
| SF6 Purity                                  | %                  | 99.9            | 4          |                  |
| SF6 dew point                               | °C                 | -30.8           | 2          | ALARM            |
| Closing coil resistance                     | Ohm                | 215.3           | 4          | GOOD             |
| CErippine.coil.resistance.cr                | de Ohmere d        | ) ccn230.3mm    | The Period | FAIR             |

**Conclusion:** The health indexing formulation and reliability assessment will help asset owners to categorize circuit breaker fleet and map reliability status like, Good, Fair, Alarm, Critical and Replace. This will further help in assessing asset longevity and planning of OPEX and CAPEX. It is a powerful tool that quantifies the equipment condition based on various conditional parameters that are related to short- or long-term degradation.

#### http://www.cigre.org