

KEMA Labs

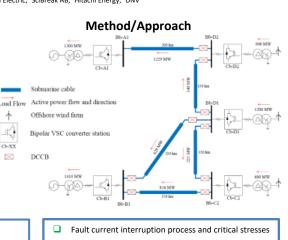
Study Committee A3

Transmission and Distribution Equipment

Paper 10545 2022

Recent HVDC Circuit Breaker Development and Testing

N. A. Belda¹, R. P. P. Smeets¹, H. Ito², S. Tokoyoda², T. Inagaki², S. Nee³, T. Modeer³, M. Semere⁴, A. Hassanpoor⁴, C. A. Plet⁵ ¹KEMA Labs, ²Mitsubishi Electric, ³SciBreak AB, ⁴Hitachi Energy, ⁵DNV

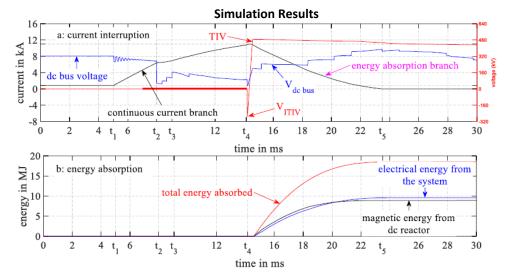

 \uparrow

_KÌ

cb-XX

Motivation

- Increase technology readiness level (TRL) of HVDC CBs, define and develop test methods and test procedures
- Field and practical experiences are unavailable \rightarrow provide lab experience as inputs to ongoing standardization activities
- Increase confidence of end users HVDC CBs through demonstration
- Challenges of testing and develop alternative testing methods


Objectives

- Qualify HVDC CBs for short-circuit current breaking
- Define requirements of HVDC CBs \rightarrow Perform (conceptual) system simulation studies
- Evaluate and compare test circuits, develop test method and setup test procedure, define test duties
- Experimental investigation of HVDC CB setup \rightarrow Determine and quantify the electrical and thermal stresses (on internal (sub-)components)
- Full-power testing (demonstration) of three different technologies of HVDC CBs
- Submit HVDC CBs to complete stress as would be in service in one go

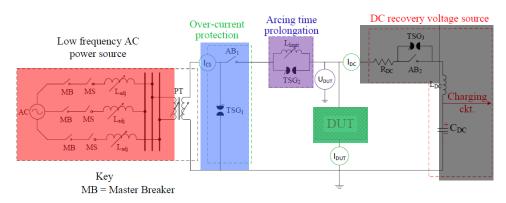
- > Internal current commutation
- Generation of TIV
- Energy absorption
- DC recovery voltage withstand
- Electrical stresses
 - Short-circuit current
 - Voltage stresses

Non-electrical stresses

- Thermal energy stresses
- Mechanical stresses

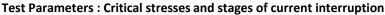
http://www.cigre.org

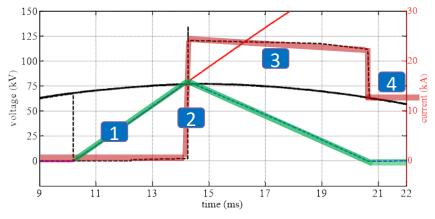
Study Committee A3


Transmission and Distribution Equipment

Paper 10545_2022

Recent HVDC Circuit Breaker Development and Testing


N. A. Belda¹, R. P. P. Smeets¹, H. Ito², S. Tokoyoda², T. Inagaki², S. Nee³, T. Modeer³, M. Semere⁴, A. Hassanpoor⁴, C. A. Plet⁵ ¹KEMA Labs, ²Mitsubishi Electric, ³SciBreak AB, ⁴Hitachi Energy, ⁵DNV


Test Circuit: AC Short-circuit generator based

Test Method : AC Short-circuit generator based

http://www.cigre.org

KEMA Labs

Study Committee A3

Transmission and Distribution Equipment

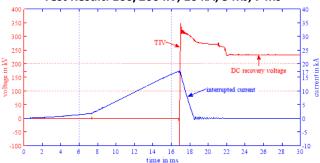
Paper 10545_2022

Recent HVDC Circuit Breaker Development and Testing

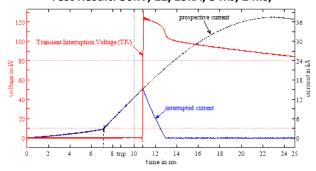
N. A. Belda¹, R. P. P. Smeets¹, H. Ito², S. Tokoyoda², T. Inagaki², S. Nee³, T. Modeer³, M. Semere⁴, A. Hassanpoor⁴, C. A. Plet⁵ ¹KEMA Labs, ²Mitsubishi Electric, ³SciBreak AB, ⁴Hitachi Energy, ⁵DNV

Active current injection HVDC CB

Test Result: 160/200 kV, 16 kA, 5 MJ, 7 ms



Hybrid HVDC CB


VARC HVDC CB

Test Result: 320 kV, 20kA, 10 MJ, 3 ms, 500 40 prospective cur 450 36 Transient Interruption Voltage (TIV 32 400 28 ≥ 300 ≣ 250 24⊴ DC recovery voltag 20년 16 12 12 250 200 200 200 200 nterrupted current 8 4 50 0 2 4 6 8 10 12 14 16 time in ms 18 20 22 24 26 28 30

Test Result: 80kV, 12/15kA, 3 MJ, 2 ms,

Conclusion

- ✓ System simulation studies → Critical stresses and current breaking stages have been identified
- \checkmark Current breaking test requirements of HVDC CBs have been defined \rightarrow translated from simulation studies
- Adequate test method has been developed and demonstrated
- ✓ Three technologies of HVDC CBs have been tested up to 320 kV, 20KA
- TRL of 6-7 has been achieved

http://www.cigre.org