

Study Committee A3

Transmission and Distribution Equipment

Paper 10643 2022

Recent Development of SF₆ Alternative Switchgear **Using Natural-Origin Gases in Japan**

T. Uchii *1, D. Yoshida *2, S. Tsukao *3, K. Taketa *4, K. Tsuboi *5 *1: Toshiba Energy Systems & Solutions Co. *2 Mitsubishi Electric Co. d, Inc. *4: Kansai Transmission and Distribution, Inc. *5: Chubu Electric Power Grid Co., Inc. *3: TEPCO Power Grid, Inc.

Motivation

- The "7 requirements" as evaluation criteria of SF₆ free switchgear has been developed by the "SF₆ Alternative Gas Study Group" composed of Japanese 11 utilities, 7 manufacturers and 6 academia and CRIEPI, together with TDGC and JEMA as observers.
- This paper reports the current status and progress of SF₆-free switchgear development in Japan based on the "7 requirements".

Conclusions

- There are no disadvantages of natural-origin gases from the viewpoints of EHS, gas handling and utilization under normal service condition.
- In most cases, aged GISs installed in the 1970s and 1980s are replaceable with natural-origin gas switchgears. On the other hand, design improvements and technological innovations should be continuously necessary to meet future replacement needs for later generations of existing SF₆ equipment.
- Developments of HV switchgears using natural-origin gases have been actively ongoing in Japan. The first pilot installation of the 72 kV GISs adopting synthetic air insulation will be completed by the end of 2022.
- While further coverage up to 550 kV must be a great technical challenge, the authors, as Japanese manufacturers and utilities, will aim to complete it by the end of 2029.

Summary of the evaluation of natural-origin gases based on "7 requirements"

No.	Categories	Requirements	Relevant technical items	Outlook with natural-origin gas solutions	
1	EHS	Lower risk of toxicity of decomposition gas and by-product than SF ₆ .	A, B, C, D	For CO ₂ /O ₂ , arced gas includes CO or O ₃ , but the acute toxicity level stays in Category 6 (harmless) even after abnormal heavy fault interruptions. For synthetic air no harmful characteristics including are decomposed condition.	
2	Service Condition	Normal use conditions specified in the standard. (e.g. operation in -25 °C)	Е	Service condition even in cold regions below -40°C is not a concern based on low liquefaction temperature for wide pressure range in case of natural-origin gases (N ₂ , CO ₂ and O ₂).	
3	Stable Supply	Stable supply of the gas, preferably by multiple suppliers.	G	Natural origin gasses such as CO ₂ /O ₂ and Synthetic air are quite commonly supplied by a lot of general industrial gas manufacturers.	
4	Gas Handling	Simple gas handling.	Н	Evaluated that the impact of dispersion in mixture composition on dielectric performance is limited to the range of +/-1%, which is well manageable by a design role and verified by a type test.	
5	Life Cycle Cost	Reasonable life cycle cost, including equipment, installation, maintenance, etc.	F, I, J, K	Expected life time and operation cost with natural- origin gas equipment can be equivalent compared to the existing SF6 equipment, while design improvements and technological innovations to minimize initial cost should be necessary.	
6	Footprint	Possible to replace in restricted locations, such as outdoor and underground substations.	J, K	Possible to replace currently aged GIS manufactured in the 1970s and 1980s with natural- origin gas equipment.	
7	Voltage Coverage	Feasibly scalable up to the extra high voltage (EHV) rating 550 kV.	K, L	New design approaches and specification rationalizations will be studied and positively adopted to minimize equipment size. Both 72/84kV kV 31.5 kA GIS and 168 kV 40 kA VCB using natural-origin gases will be piloted soon by 2023 in Japan. The authors, as Japanese manufacturers and utilities, will aim 550 kV by the end of 2029.	

- Physical properties and environmental pote Toxicity including decomposed products Operating pressure and temperature range

- Gas availability Erosion of arcing contacts and nozzles Interruption performance
- - H
- osed gases and solid by-products Safety Material compatibility

Gas mixture quality control
Dielectric performance
Feasibility studies for higher ratings and c

Study Committee A3

Transmission and Distribution Equipment

Paper 10643_2022

Recent Development of SF₆ Alternative Switchgear Using Natural-Origin Gases in Japan (continued)

Selection of gases

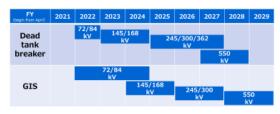
- Practical alternative gases that can be used as single gas or a base gas of mixtures are N₂, CO₂ and O₂.
- Artificial fluorinated gases such as C4-FN have not been directly selected so far, mainly because of still existing concerns on EHS aspects, stable supply, potential environmental and regulatory risks.
- In the present study, mainly focused on (i) Synthetic air and (ii) CO₂/O₂ mixture

Screening of alternative gases

Criteria of selection	Remaining quantity
Total number of surveyed material (from Chemical Handbook)	8,568
Being Gas state at room temperature (Boiling temperature under 25 deg C.)	189
Not contain chlorine element (CI)	163
Not contain bromine element (Br)	149
Having no toxicity and explosibility	69
Not having high reactivity	50
Omitting gases of unknown properties	20
GWP <=1	9
Dielectric strength > 10% of SF6	3 (N2, CO2, O2)

Pilot projects and future plan

- 72/84 kV F-gas free GIS consisted of a VCB with synthetic air insulation has completed the type test and will be installed by the end of 2022 as the first pilot in Japan.
- Developments of 168 kV VCB are also ongoing and will be in operation in 2023.
- The roadmap of natural-origin gas insulated switchgear developments above 72 kV was presented. Although coverage up to 550 kV must be a great technical challenge, the authors, as Japanese manufacturers and utilities, will aim to complete it by the end of 2029 for the future sustainable T&D systems.



F-gas free 72/84 kV GIS

F-gas free 72/84 kV VCB (left) and 145 kV VCB (right)

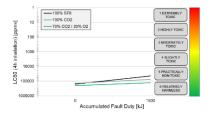
The roadmap of natural origin gas-insulated switchgear releases above 72 kV (as of August 2022)

Study Committee A3

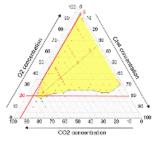
Transmission and Distribution Equipment

Paper 10643_2022

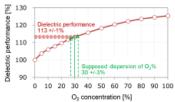
Recent Development of SF₆ Alternative Switchgear Using Natural-Origin Gases in Japan (continued)


Background data on (1) EHS aspects

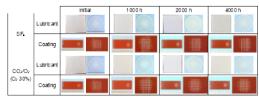
		Toxicity LC50	Pure COz	002/02(30%)
I	COz	141,618 /4h	(Balance)	(Balance)
I	0z		196	299,830
I	CO	2,612 /4h	7,000	120
I	HF	642 /4h	100	250
I	03	11 /4h	35	25
I	Hz	> 15,000/1h	15	4
I	CH.	> 500,000/2h	2	2


Decomposed gases detected after arcing in pure CO_2 and CO_2/O_2 mixture. (490 litter enclosure after 1,500kJ of arc energy)

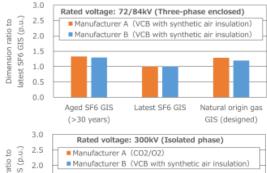
Reduction of decomposed gas concentrations in CO₂/O₂ gas mixture with a specific absorbent



Acute toxicity assessment:
Accumulated fault duty vs. LC50(4h) on Hodge-Sterner scale,
up to 1,500 kJ in 490 liter enclosure


Experimental assessment result of flammable range of a combustion gas CH₄ in CO₂/O₂ (yellow area indicates the flammable range)

Background data on (4) gas handling


$$\label{eq:continuous} \begin{split} & \text{Impact of O}_2\% \text{ dispersion on dielectric performance} \\ & \text{ of CO}_2/O_2 \text{ gas mixture equipment.} \\ & \text{ (Supposing dispersion of 30 +/-3\%)} \end{split}$$

Background data on (5) life cycle cost

Examples of long-term material compatibility test (lubricants and coatings in $CO_2/O_2(30\%)$)

Background data on (6) footprint

Estimated equipment dimensions using natural-origin gases compared with aged and the latest type of GIS

http://www.cigre.org