

Study Committee A3 Transmission and Distribution Equipment

Paper 10875 2022

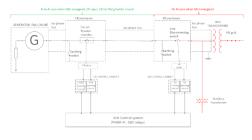
Integrated Disconnector on Generator Circuit Breakers for environmental and footprint optimization

Jean-Marc WILLIÈME, Denis FRIGIÈRE, Didier RODRIGUES, Matthieu BARRÉ, Blandine REVAUD, Diana LEGUIZAMON

GE Grid Solutions

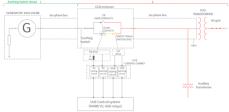
Motivation

- GCB architecture has evolved from stand-alone equipment connected by portions of busbars to fully integrated solutions.
- The choice of architecture has direct impact on the environmental impact of the Power Plants.
- New architectures allow for optimal reduction of footprint and environmental impact.

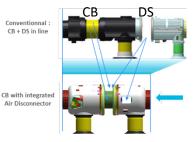

Typical Life Cycle Analysis of GCB

Handacturing School School<

 Use phase is the most impacting, Joule's losses representing most of it.


Stand –alone architecture

- Allows access to the circuit breaker for maintenance without de-energizing the transformer because CB and DS are in separate enclosures.
- Needed for circuit breakers that require frequent maintenance.
- More expensive and less effective solution from environmental point of view.



GCB with Integrated Air Disconnector

- In New equipment, Disconnector and main contact function of the CB are merged to one set of contacts in air.
- No need of intrusive maintenance for main contacts as available in the air. Reduced risk of SF₆ spill.

- Could represent 30% savings on the length of the system compared to in-line Disconnector architecture.
- Higher savings can be expected compared to standalone architectures.

- Gives maximum efficiency for current carrying capability without loss of performance if SF₆ leak.
- Reduces the amount of SF₆ and raw materials.

Material	Reduction Integrated DS vs In-line DS+CB architecture
SF ₆	-58%
Aluminium	-26%
Steel	-35%
Copper	-50%
Plastics & Resins	None

Conclusion

- Choice of GCB architecture has direct impact on environmental footprint of the power plant.
- Modern architectures allow for maximum efficiency: High compactness and low Joule heat losses http://www.cigre.org