

Study Committee A3

Transmission and Distribution Equipment

Paper 10948_2022

Seismic Performance Of Instrument Tranformers

Ivan ČEHIL* Končar – Instrument Transformers, Inc.

Tomislav CAPAN Končar – Instrument Transformers, Inc. Igor ŽIGER Končar – Instrument Transformers, Inc.

> Matej TUFERDŽIĆ Sinitech Industries d.o.o.

Motivation/Aim

 Seismic events are one of the most unpredictable events affecting modern society, including power grid

Three main goals of this paper are:

- To provide a systematic comparison of relevant seismic standards available worldwide
- To provide recommendation on what is the best practice when performing seismic qualification of instrument transformers
- To advocate FEM Analyses as an indispensable and very useful tool for seismic qualification and calculations

Method/Approach

- The paper is based on actual shake table tests performed on two instrument transformers tested according to IEEE 693 (2005 an 2018 versions)
- Both transformers tested with a support structure included
- Associated FEM analyses were conducted on those units
- Results from both shake table tests and FEM analyses are compared and analyzed and recommendations given

Comparison of Relevant standards

IEEE 693

- The most well-rounded and the most demanding is the IEEE 693 (2005 and 2018 versions)
- Covers a wide range of high-voltage equipment, including instrument transformers
- Mostly used in North America; accepted in the entire world

IEC 62271-300

- IEC 62271-300 primarily intended for circuit breakers
- Generally less demanding requirements compared to the IEEE 693
- Mostly used in Europe

ETGI/ETGA

- ETGI and ETGA are Chilean standards
- Very conservative
- Hard to optimize the components due to the high requirements for both brittle and ductile materials
- Symultaneous use of short circuit force with seismic forces
- IEEE 693 is accepted as equivalent at High Performance Level

IEC 61869-1 (draft 38/652/CD)

- New revision of IEC 61869-1 will contain a specific annex for seismic qualification
- It will use the same RRS as the IEEE for 0,5 g
- Upper right figures show the comparison of IEC vs IEEE

Standard	Qualification level [g]	Acceptance Criterium	Safety factor
IEEE 693- 2018	Design Level: 1. Low: ZPA⊴0,1 2. Moderate: ZPA=0,3 3. High ZPA=0,5	Dactile materials: ≤yield strength Ω (AISC 360, ASD) Brittle materials: ≤ 50% treaking strength (SNL)	1,67 2,0
	Performance Level: 1. Low: 2PA⊴0,1 2. Moderate: ZPA=0,5 3. High: 2PA=1,0	Ductile materials: ≤ yield strength / Ω (AISC 360, ASD) Brittle materials: ≤ 100% treaking strength (SML)	1 1
IEC 62271- 300	Low: ZPA⊴0,2 Moderate: ZPA=0,3 High: ZPA=0,5	$\begin{array}{c} \text{Ductile and Brittle materials:} \leq 100\% \\ \text{Yield strength} \end{array}$	1
IEC 61869-1 38/652/CD	Very light: ZPA=0,1 Light to medium: ZPA=0,2 Medium to strong ZPA=0,3 Strong to very strong: ZPA=0,5	Ductile materials: ≤ 100% yield strength Brittle materials: ≤ 100% breaking strength	1
ETGA (ETGI) 1- 0.20	0,5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,25 2

http://www.cigre.org

Study Committee A3

Transmission and Distribution Equipment

Paper 10948 2022

SEISMIC PERFORMANCE OF INSTRUMENT TRANFORMERS

Ivan ČEHIL*

Končar – Instrument Transformers. Inc.

Tomislav CAPAN Končar – Instrument Transformers, Inc.

Igor ŽIGER Končar – Instrument Transformers. Inc.

> Matei TUFERDŽIĆ Sinitech Industries d.o.o.

Units considered

COMBINED UNIT TYPE VAU-245

- Tested according to IEEE 693-2005 version
- ٠ Transformer was tested on a bi-axial shake table test in IZIIS (Institute of Earthquake Engineering and Engineering Seismology) in Skopje, Macedonia
- RRS was multiplied with the factor of 1,4 due to the • significant coupling and the real ZPA was 0,7 g

INDUCTIVE VOLTAGE TRANSFORMER TYPE VPU-145

- Tested according to IEEE 693-2018 version
- Transformer was tested on a tri-axial shake table test in CESI (Seismic & Vibration Test Laboratories) in Bergamo, Italy
- ZPA was 1,0 g

Experimental setup and test results

INDUCTIVE VOLTAGE TRANSFORMER TYPE VPU-145

http://www.cigre.org

VPU-145

VPU 145

Insulator stress

[MPa]

7.15

7,7

Base assembly

stress

[MPa]

68.2

118,3

73

Study Committee A3

Transmission and Distribution Equipment

Paper 10948 2022

SEISMIC PERFORMANCE OF INSTRUMENT TRANFORMERS

Ivan ČEHIL* Končar – Instrument Transformers. Inc.

Tomislav CAPAN Končar – Instrument Transformers, Inc.

Igor ŽIGER Končar – Instrument Transformers, Inc.

> Matei TUFERDŽIĆ Sinitech Industries d.o.o.

VAU-245

VAU 245

Base assembly

stress

[MPa]

220

806

266

FEM with

support structure

FEM without

support structure

Increase [%]

Comparison of FEM Analysis to actual tests

- There is a good corelation between shake table test results and associated FEM analyses
- Natural frequencies calculated in FEM analyses are almost identical to shake table test frequencies
- This was a firm confirmation that the model was correctly designed
- Stresses and deflections under 15 % of difference which gives solid ground for design optimization

Influence of the support structure

- . When tested without support, test and analysis shall be carried out with the multiplication factor of 2,5
- This causes increased stresses in transformer components that are not present in actual operation
- Calculated stress for VAU-245 without a support structure are roughly more than two times higher than ultimate stress and almost four times higher in absolute change.
- VPU due to much lower weight, centre of gravity and a composite insulator has lower but visible increases in stress, especially in the base assembly.

VAU-245

Conclusion

- IEEE 693:2018 is the most well-rounded standard for seismic gualification. Qualifications performed according to that standard should be inherently acceptable for all other standards as well
- FEM analysis can be used as a reliable tool for seismic qualification as well as for design optimization.
- Instrument transformers should always be qualified with support structures included. Otherwise they have to be dimensioned for stresses they will not encounter in actual operation

http://www.cigre.org

	Natural frequency [Hz]	Base assembly stress [MPa]	Insulator stress [MPa]	Directional deformation [mm]	Natural frequency [Hz]	Base assembly stress [MPa]	Insulator stress [MPa]	Directional deformation [mm]
Shake table test	2,35	21	14,3	152	5,55	74,4	10,93	37
Response Spectrum method	2,27	24	14,8	158	5,61	68,2	9,5	32
Difference [%]	3,5	13,3	3,4	3,9	1	8,7	14	14,5

Insulator stress

[MPa]

14.8

33,5

126