



חברת החשמל Israel Electric

Transmission & Distribution Equipment

Paper 11133\_2022

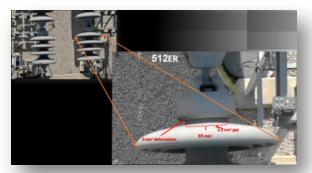
# Unmanned Aerial Vehicles usage for Asset Condition Assessment

Marcel Ellenbogen Israel Electric Corporation Chen Granas, Raviv Shenkar Pro-Visint

## Motivation

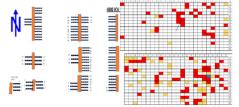
- Asset Condition Assessment of Switchgear and Substation's exposed equipment without interrupting the facilities' operation (LIVE inspection). Previously executed using "looking-up" method (binoculars) or "ground-up" manual photography in extremely high Electromagnetic (EM) fields (up to 400 kV)
- AIM: intelligently prioritize the replacement of external diameter's / busbar's equipment, without compromising the reliability of the National Grid

## Method/Approach


- Operations sequences follows strict safety rules.
- Cyber restrictions, data processed in safe environment.
- Each matrix element corresponds to several pictures.
- Criticality is assessed by identifying individual failed insulator positioned in the string in a manner that can lead to an imminent failure.

## **Objects of investigation**

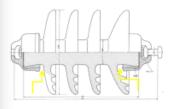
- "Weak" tension dead-end chains (single and double strings, 4 5 insulator each)
- Main objective: Mapping for "visual" Risk assessment.
- Objective 2: Reliable Prioritization of replacements to minimize the National System risk and Bus Bar's "near to failure" insulators strings replacement sequence.
- Objective 3: Extrapolating the method for all exposed elements in the Switchyards / Substation and adjacent portals and EHV / HV towers.
- Objective 4: Correct Specifications for UAV missions inside or adjacent energized Substations / Switchyards


## **Measuring Method**

- Post image enhancement assessment
- Good light, good focus, precise angle, Ultra-Resolution achievement



## **Experimental setup & test results**


- Visual identification of every "cap-pin" type insulator deterioration: perceive and document a minimum 1 mm displacement at all insulators in all strings. MAIN STEPS:
  - 1. Airborne System Calibration: focus on keeping and control specified safety distances.
  - In-situ Command & Control deployment, proof of UAV's maneuvering close to Electro Magnetic field with similar intensity as the target zone.
  - 3. Mission performing, active monitoring, security supervision according to specs.
  - 4. Initial report : risk matrix, samples of failure deciphering and conclusions
  - IEC experts' analysis in dedicated workshop: the resulting risk matrix is base for Bus Bar string replacement schedule.
- From Switchgear's schematic layout profile (left) to "risk matrix" provided by service provider (right).
  RED = Certain Failure, ORANGE = Suspected Failure



• Insulator (strings) classification / replacement prioritization due to proven criticality (example).

"\*" ["Advanced degradation" (orange)] is the level of imminent failure risk





Profile and sizes of Dead-End Antifog - type Insulator: Emphasis on possible unsheathing areas.

# http://www.cigre.org







## Study Committee A3 **Transmission & Distribution Equipment**



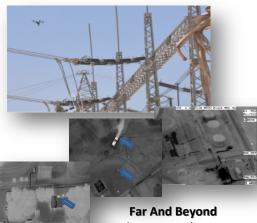
# Paper 11133 2022 **Unmanned Aerial Vehicles usage** for Asset Condition Assessment

## Discussion

- · It is very difficult and inefficient to identify network objects and establish a comprehensive understanding of equipment's' technical condition (at less than 1 mm displacements as inside insulators) using binoculars or photo camera by simply looking up: additional tests (method) must be employed.
- All findings based on ground methodology are in fact "assumption" of a failure, needing subsequent confirmation, usually during an (un) planned outage.
- A more efficient and economical approach: downward photography using steady UAV, making possible an objective ranking process (based on evidence), with minimal involvement of Utility's specialists.
- Service provider "learning curve rate" after 2 "rounds" is ~85-93%.
- After ranking, a portfolio of scheduled works can be prepared without any ado, with sufficient guarantee that the established priorities and the correct replacement sequence are optimal and safe for the Grid.

#### Outsourced E2E assessment

- Fully Regulated process
- Usually strict schedule (for Grid stability/safety reasons)
- Safety operation (each step must be approved)
- Mission plan and mapping (security issues)
- Actual Arial photo execution (in the approved "window")
- Post processing, analysis & report (~2-3 weeks Time 2 Market)


#### Evidence

Establishing Failure Mode or Factory improper QA



#### Conclusion

- Regarding the use and operation of UAV in an energized environment:
  - 1. currently, no substitute for an external service provider, in all issues.
  - 2. It is possible to discover external failures in (extra) high voltage network equipment in general, and in insulators in particular, by implementation of advanced image collection and processing.
  - 3. Key-condition for success: a clear technical specification in which the conditions are accurately described.
- Final deciphering, subsequent failure ranking, work prioritization: Utility internal service-"in house" know-how.
- Substantial reduction of O&M without jeopardizing system stability / safety or interfere with PM works.



Then Meet The Eye



http://www.cigre.org