

Study Committee B1

Insulated Cables

Paper ID 10276

APPLICATION OF FAULT TREE ANALYSIS TO UNDERGROUND CABLE ACCESSORIES

Najwa Abouhassan and Andrew Morris Commonwealth Edison Company

Motivation

- The increasing demand for reliable power combined with the attrition of experienced engineers leads to a need for better analysis of equipment failures
- Heat-shrinkable cable joints have been especially troublesome on ComEd's system and have required more detailed analysis than present practices allow

Method/Approach

- Fault tree analysis was proposed as a useful means to describe failure mechanisms
- It is also useful to evaluate the relative probability of different failures and the effectiveness of their countermeasures

Experimental setup & test results

- A fault tree was developed for the heat-shrinkable joint based on major modes and causes of failure
- This tree was applied to existing failure histories and the analysis reports were mapped onto the fault tree
- The incidence of defects was scaled up from observations to give system probabilities of defects

Discussion

- Leading causes of failures were found to be water in cable, inadequate heat-shrinking, and mastics out of position
- These causes match the qualitative experience of the failure analysis engineers when examining failed joints in the laboratory
- The nature of fault tree analysis allows much more detail to be provided in the laboratory, but also by the initial fault reporter when fault tree analysis is used as a basis for the field reporting codes

Objects of investigation

- Fault tree analysis was applied to heat-shrinkable cable joints
- These joints have had frequent failures and many failed samples were available for evaluation

Conclusion

- Fault tree analysis methods can be used to extend a limited set of laboratory observations to describe the state of the system in general
- Very precise causal factors can be identified with this method and then grouped for identifying preventive measures such as improvements to construction methods and training
- Rapid and systematic identification of failure causes makes reliability improvements with limited resources more practical, including changes to material and construction standards, employee training, and manufacturing practices.

Study Committee B1

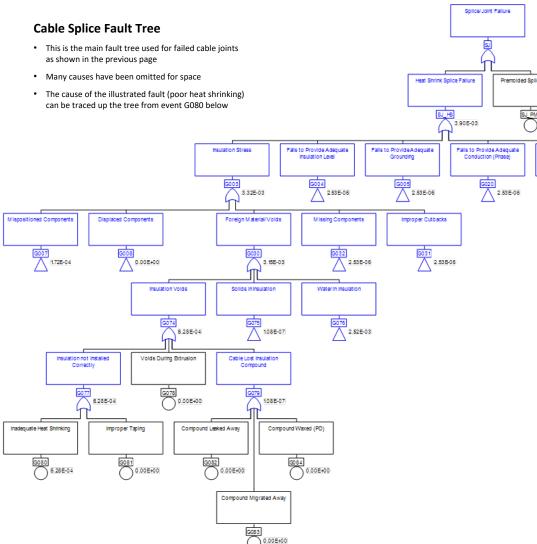
Insulated Cables

Paper ID 10276

APPLICATION OF FAULT TREE ANALYSIS TO UNDERGROUND CABLE ACCESSORIES continued

Cable Joint Faults

An example cable joint fault



Study Committee B1

Insulated Cables
Paper ID 10276

APPLICATION OF FAULT TREE ANALYSIS TO UNDERGROUND CABLE ACCESSORIES

continued

