

Orsted № K5

INTERN/

Missing R'

Discovered after submittal

of the paper

Study Committee B1

Insulated Cables

10693_2022

Sequence Impedance of Submarine Cables

Thomas KVARTS, Anna Candela GAROLERA, Ziyi (Uta) HUANG

Ola THYRVIN NKT HV CABLES AB

Ørsted Wind Power A/S

Motivation

- OWF developer(s) rely on accurate & reliable cable sequence impedance data to optimize the overall electrical system design & operation, where submarine cable(s) constitute a major part considering the long length(s).
- Contrary to its reliable application to underground cable(s), Cigre TB 531 analytical calc. for modern 3-c submarine cable(s) is not trivial to implement and contains some intrinsic shortcomings.
 - a. Parallel earth return through cable armour is missing in power-frequency Z₀ calc
 - b. <u>Seabed earth return resistance</u> has been forgotten in the conductor resistance for Z₀ calc. (table 12
 - c. Application to Z₁ calc. at higher frequencies is not considered
- An improvement on existing TB 531 analytical calc. for submarine cable(s) is highly desirable from the industry.

Method/Approach

 I_0

Z₀

l_o

Loop 1

d×j3X_a

ground

circuit

3R

- Improved analytical calc. method for Z₁ (power & higher frequencies) is developed from *first principles*
- Improved analytical calc. method for Z₀ (power frequency) is developed from classic circuit theory ٠

3R_{e2}

lg

 X_{c-eff} - effective conductor inductive reactance consisting of conductor internal inductance and conductor-sheath mutual inductive reactance

 X_a - sheath-armour mutual inductive reactance,

 X_q - armour-remote ground return mutual inductive reactance

 R_{e1} , R_{e2} - two sheath grounding resistances at either cable connection end (often neglectable for offshore cables)

Improved Analytical Calculation Method

d×3Rg

d×3jXg

d×R

Loop 2 d×3R

$$Z_1 = R_1 + jX_1$$

$$R_1 = R_c [1 + \lambda'_1 + \lambda''_1 + \lambda_2]$$

$$R_c = LF_{core} \cdot R_{dc} [1 + F_a (y_s + F_{m-shield} \cdot y_p)]$$

$$X_1 = LF_{core} \cdot [\omega L_{c-int} + F_{m-enhance} (\omega L_{cs} + \omega L_{ss})]$$

$$Z_0 = R_0 + jX_0 = R_c + j \cdot X_{c-eff} + \frac{3R_s \left[j \cdot X_a + \frac{R_a (R_g + j \cdot X_g)}{R_s + 3j \cdot X_a + \frac{R_a (R_g + f \cdot X_g)}{R_s + 3j \cdot X_a + \frac{R_a (R_g + R_g + K_g + X_g)}{R_s + 3j \cdot X_a + \frac{R_a (R_g + R_g + K_g + X_g)}{R_s + 3j \cdot X_a + \frac{R_a (R_g + R_g + K_g + X_g)}{R_s + 3j \cdot X_a + \frac{R_a (R_g + R_g + K_g + X_g + X_g$$

http://www.cigre.org

Orsted NK5

INTERN

Study Committee B1

Insulated Cables

10693_2022

Sequence Impedance of Submarine Cables

Thomas KVARTS, Anna Candela GAROLERA, Ziyi (Uta) HUANG

Ørsted Wind Power A/S

Ola THYRVIN NKT HV CABLES AB

Method Validation & Benchmarking

- 3-core submarine export cable (220 kV 1000mm² Cu conductor, SL type and SS armour) from Cigre WG B1.56 work CS8 •
- Benchmarking against CIM method and FEA method

Circuit topology for creating the incident matrix A for the CIM method

Complex Matrix method (applying systems structures/incident matrix)

Parameter	Analytical results [Ω/km]	FEA results [Ω/km]	CIM results [Ω/km]	TB531 results ^(1,1) [Ω/km]	Variation [%]			
Z1	0.0397+0.1193j	0.0390+0.1184j	0.0397+0.1193j	0.0397+0.1193j				
R ₁	0.0397	0.0390	0.0397	0.0397	-1.8/0/0			
X 1	0.1193	0.1184	0.1193	0.1193	-0.8/0/0			
⁽¹⁾ TB 531 modified with eddy currents and including effect of y_p and y_p on R, and y_p on X($f_p \cdot r_p$)								
Zo	0.1819+0.0934j	0.1831+0.0954j	0.1818+0.0945j	0.1 8 39+ 01193j	+17%			
Ro	0.1819	0.1831	0.1818(2)	0.2129 0.1639	0.7/-0.15/-11			
x _o	0.0934	0.0954	0.0945(2)	0.1005	2.1/1.1/7.1			
⁽²⁾ Aroom issue with implementation of Lap Factors on inductances, if U [*] _a = U [*] _{max} is used -porfect alignment between Analytical and OM results ⁽²⁾ Adding R ₂ to Zo in TBS31, table gives the expected higher resistance, compared to adding the extra metallic return path of the armour (Check: good correlation if amour resistance is set very high)!								

Missing R'_F In Table 12 -Not mentioned

in the paper!

POSITIVE-SEQUENCE	ZERO-SEQUENCE		
$Z_d = \begin{bmatrix} Z_o - Z_x \end{bmatrix} - \frac{(Z_m - Z_x)^2}{Z_s - Z_s} + R_s \mathcal{A}_2$	$Z_{k} = \underbrace{\mathcal{R}\left(1+Y_{x}\right) + j \mathcal{X}_{a}}_{Z_{y}} + 2 Z_{y} - \frac{(Z_{m}+2 Z_{y})^{2}}{Z_{y}+2 Z_{y}}$		

TB 531 Table 12 Submarine Armoured cables

 $Z_{\alpha}=R'_{E}\!+\!R_{\alpha}+j.X_{\alpha}$

SOLID

TB 531 Table 10 Single core cables

ZERO-SEQUENCE $Z_h = Z_a + 2Z_a - (Z_m + 2Z_a) \frac{(Z_m + 2Z_a + 3.X_b/I)}{Z_J + 2Z_J + 3.\frac{3}{2}/I}$

APRIL ADDRESS

 $Z_d = [Z_a - Z_x] - \frac{(Z_m - Z_x)}{Z_a - Z_a}$

 R'_{E} still included in $Z_{s} Z_{m}$ and Z_{x}

http://www.cigre.org

orsted № K5

INTERN/

Study Committee B1

Insulated Cables

10693_2022

Sequence Impedance of Submarine Cables

Thomas KVARTS, Anna Candela GAROLERA, Ziyi (Uta) Ola THYRVIN HUANG NKT HV CABLES AB Ørsted Wind Power A/S

FEA model Based on slightly modified standard model

Higher Frequencies Application

- All existing IEC 60287-1-1 formulae involving frequency components may still be used at higher frequencies by simply updating parameter f and ω.
- The sheath magnetic field shielding effect factor, Fm-shield, adopts a similar approach as per IEC 60287-1-1 section 2.4.2.5 and is expected to become stronger as operating frequency increases under Lenz's Law.

Comparison of Z ₁ results of high frequencies and at high temperature								
Frequencies	Analytical results	FEA results	R ₁ Variation	X ₁ Variation				
50 Hz	0.0397+0.1193j Ω/km	0.0390+0.1184j Ω/km	-1.8 %	-0.8 %				
200 Hz	0.1621+0.3825j Ω/km	0.1390+0.3662j Ω/km	-14.3 %	-4.3 %				
500 Hz	0.2785+0.7277j Ω/km	0.2409+0.7157j Ω/km	-13.5 %	-1.6 %				
1000 Hz	0.3241+1.2906j Ω/km	0.3141+1.2794j Ω/km	-3.1 %	-0.9 %				
2000 Hz	0.3624+2.4549j Ω/km	0.3916+2.3964j Ω/km	8.1 %	-2.4 %				
5000 Hz	0.4344+5.9746j Ω/km	0.4838+5.7391j Ω/km	11.4 %	-3.9 %				

According to the design experience from an offshore wind developer, a positive sequence impedance value uncertainty of less than 2 % at power frequency and up to up to 15% for harmonics is considered acceptable for system study, compared with a much bigger discrepancy than observed between Cigre TB531 analytical method and some commercial system study packages (e.g. PSCAD). However, the uncertainty on harmonics could be ground for further investigations.

Conclusion & Future Work

- An improved analytical calc. method has been developed for submarine cable sequence impedance calc, with calc. results being benchmarked by both CIM method and FEA method.
- Suggested future works would include,
 - a. Results comparison & benchmarking against site sequence impedance measurement(s)
 - b. Method improvement & factor quantification considering magnetic armour(s)
 - c. Method improvement for parameter calc. at higher frequencies
- Collaborate with Cigre DK, UK and SE national committee to work on calc. standardization through future WG.