

Study Committee B1

Insulated Cables

10703_2022

Effect of semi-conducting jackets on the performance of

three-core armoured power cables

Andreas I. CHRYSOCHOS* Dimitrios CHATZIPETROS* Dimitrios N. KOSSYVAKIS* Vasileios L. KANAS* Konstantinos PAVLOU* Konstantinos TASTAVRIDIS* George GEORGALLIS*

*Hellenic Cables. Greece

Motivation

- Effect of semi-conducting (SC) jackets on the thermal performance of 3C armoured cables used in offshore wind farms, often being of long route lengths
- IEC 60287-1-1: No-reference to the above effect on current rating of SL-type, wire armoured cables
- Existing literature: Finite element (FE) studies and measurements give some indication of the effect
- Present study: Investigate the effect via the electromagnetic (EMT) representation of the cable, accounting for its distributed nature

Method/Approach

- Existing FE models and measurements may give some evidence of the SC effect:
 - Plus: Realistic representation of a cable length, including any 3D effects
 - Minus: Does not account for the distributed nature of the cable, due to short length (in practice impossible to measure over 50-100 m)
- Existing EMT cable models: Pipe-Type (PT) representation
 - Plus: Includes the distributed nature of the cable via successive pi-equivalents at power frequency
 - Minus: PT cable does not account for 3D effects stemming from the existence of helices
- Suggested cable model: Take advantage of state-ofthe art FE Short-Twisted (ST) models and EMT approach via Js-method
 - Plus: Considers the distributed nature of the cable including 3D effects due to helices

Figure 1: Cable geometry imported in 3D FE ST models used to derive the pul series impedance matrix **Z** via Js-method.

Js-method and EMT incorporation

Self and mutual elements of Z: $Z_{ij} = \frac{v_i}{r_i} = \frac{Js_i}{\sigma_i T_i}$

where V_i the pul voltage drop, J_{S_i} the source current density and σ_i the conductivity of layer *i*.

Figure 2: Cable modelling approach in EMT program. Shunt conductance *G* is the key parameter (reversed sheath to sheath resistance).

Study Committee B1

Insulated Cables 10703 2022

Effect of semi-conducting jackets on the performance of three-core armoured power cables (continued)

System under study

- 3x2500 mm² Al conductor 220 kV export cable
- Total length of 20 km
- Shunt conductance G ≥ 5 S/km
- To look into more detail, the following are examined:
 - o Capacitive and inductive mechanisms, separately
 - Solid and single-point bonding schemes

Numerical results – Capacitive coupling

- Solid bonding
- Insulating jacket: The capacitive current returns solely through sheath
- SC jacket:
 - o Mutual cancellation happens, though not perfect
 - $\circ\,$ A noticeable current (~20 A at the ends) still exists
 - $\circ~$ Inductive effect of capacitive conductor current
- Similar conclusions for single-point bonding

Figure 3: Cable in solid bonding. Current profile in lead sheath of core *a* under capacitive coupling.

Figure 4: Cable in single-point bonding. Current profile in lead sheath of core *a* under capacitive coupling.

Numerical results – Inductive coupling

- Steady-state
 - $\,\circ\,$ Solid bonding: Effect of armour $\mu_{\rm r}$ on sheath current
 - Single-point bonding: in SC case circulating currents are progressively developed

Figure 6: Cable in solid and single-point bonding. Current profile in lead sheath of core *a* under inductive coupling.

Study Committee B1

Insulated Cables

10703_2022

Effect of semi-conducting jackets on the performance of three-core armoured power cables

(continued)

Numerical results – Inductive coupling

- Phase-to-ground short-circuit
 - The existence of SC jackets allows for short-circuit current sharing

Figure 7: Cable under single-phase internal fault. Current profile in lead sheaths and armour.

Figure 8: Connection of 2 different cables. Current profile in lead sheath of core *a* under inductive coupling.

- Connection of different cables
 - Effect of G on transition region
 - Increasing G, the transition region progressively narrows
 - $\circ\,$ Result: The final current value of each region is reached in less distance from the transition point

Figure 9: Connection of 2 different cables. Current profile in lead sheath of core *a* under inductive coupling. Investigation between dry and wet cable.

Discussion - Conclusion

- A more realistic EMT cable model is developed thanks to Js-method and FE 3D ST combination
- The thermal effect of capacitive current is currently not considered in current rating calculations (not discussed in any IEC or CIGRE document)
- Capacitive current entirely present in cables with insulating jacket, still noticeable in cables with SC jackets (imperfect mutual cancellation and inductive effect of capacitive current in conductor)
- Circulating currents in sheaths even under singlepoint bonding in cables with SC jackets
 - $\circ\,$ Measurement of cable loss difficult to be verified through conventional inductive EMT models
- Sharing of short-cicuit current is possible thanks to SC jackets which leads to design optimisation of metallic sheath
- Shunt conductance G is the key parameter
- The higher *G* is, the most optimum the thermal performance of the cable is
 - Quicker sharing of short-circuit current
 - Narrower transition region between different cable designs
 - Minimisation of extra lengths with oversized cables
 http://www.cigre.org