

Study Committee B1

Insulated cables

10957 2022

FORMATION OF POTENTIALLY HARMFUL SHRINKAGE CAVITIES DURING **OPERATION OF MASS-IMPREGNATED NON-DRAINING HVDC CABLES**

Magne RUNDE SINTEF Energy Research

Øvstein HESTAD **TEF Energy Research** Erik THUNBERG venska Kraftnä Valentinas DUBICKAS Svenska Kraftnät Carl E. HILLESUND

RANTANEN Fingrid

nas RAUHALA Fingrid

Cavity

duced ageing in MIND cable insulation

Sequence of events:

The cable is operating at a high load J.

The load (i.e., the current) is turned off

J The temperature in insulation falls

↓

The oil ("mass") contracts more than the paper

 \downarrow The pressure in the insulation drops

 \downarrow

Vacuum cavities form in butt gaps

\downarrow

Partial discharges ignite in the cavities \downarrow

The insulation may (or may not) be locally damaged by PD-induced carbonization

MIND cable insulation with carbonization damage caused by partial discharges.

Consequently:

The loading pattern greatly influences the internal pressure dynamics of MIND cables, and thereby the risk of having cavityinduced aging and dielectric failures.

Crucial questions:

- Which loading patterns and ambient conditions cause extended periods at very low internal pressures and thereby large and lasting cavities, and thus an increased risk of cavity-induced damage?
- Which loading patterns are "safe"?

Study Committee B1 Insulated cables 10957 2022

FORMATION OF POTENTIALLY HARMFUL SHRINKAGE CAVITIES DURING OPERATION OF MASS-IMPREGNATED NON-DRAINING HVDC CABLES continued

Measurements and simulations of the internal pressure dynamics

Internal pressure measurements

- 4-m long samples of a 525 kV / 1400 A HVDC MIND cable
- Pressure measured at both sides of the insulation
 - during no-load, full load and load cycling
 - at 1 to 10 bar ambient pressures
 - at 10 to 40 °C ambient temperatures
- Details in:
 - IEEE TDEI 26, 913–921, 2019
 - IEEE TDEI 27, 915–923, 2020
 - CIGRÉ S&E 21, 14–25, 2021
 - CIGRÉ S&E 24, 1–11, 2022

Modelling and simulations

- Pressure, temperature, electric field, mass flow, cable casing mechanics etc. are included in COMSOL model
- The model is calibrated against the measured pressures
- A pressure drop down to virtually zero is assumed to signify formation of shrinkage cavities
- Pressure dynamics and cavity volumes are modelled for 7000 cases (different loads and ambient conditions)
- Details in IEEE TDEI 29, 1135–1142, 2022

Pressure dynamics and combined cavity volume (mass "deficit") under different loading and ambient conditions

- The internal pressure tends to slowly and asymptotically approach the external (water) pressure
- Rapid internal pressure changes become superimposed on the pressure level exerted by the external pressure
- High ambient pressure and/or high ambient temperatures cannot prevent cavity formation after a load turn-off
- A high external water pressure to some extent suppresses cavity formation
- Even modest load reductions create cavities
- Cavities are created quickly and tend to last for long
- A complete ramp-down from full load leads to the largest combined cavity volume

Study Committee B1

Insulated cables

10957_2022

FORMATION OF POTENTIALLY HARMFUL SHRINKAGE CAVITIES DURING OPERATION OF MASS-IMPREGNATED NON-DRAINING HVDC CABLES

continued

Recommendations for MIND cable operation when considering the risk of cavity-induced damage

Preferred load patterns:

- High and stable load (current) is favourable. Moderate (20–30%) and brief (hours) load reductions
 are harmless as they do not result in large and lasting shrinkage cavities.
- After a cold start, the load should be ramped up fast, as this causes any cavities to quickly become filled with mass.
- Whether a ramp-down of load is fast or slow is not important. Cavities will in any case form.

More risky load patterns:

- Low loading over extended time in a cold ambient and with a low external pressure (e.g., a cable directly exposed to cold water in a shallow area) results in many cavities that over time may combine to larger ones that result in powerful partial discharges.
- After an extended time at high load, an abrupt change to low load will result in a particularly large mass "deficit" and many cavities that will last for long. Large partial discharges must be expected.

Do not run this sequence:

- 1. In winter operate a poorly trenched cable in shallow water at full load for a prolonged time, e.g., a month.
- 2. Then, turn off or rapidly reduce the load (i.e., the current) to zero.
- 3. Then, reverse the polarity (to prepare for a power flow in the opposite direction).
- 4. Then, leave the cable unloaded but energized.