

Study Committee B2

Overhead Lines

10632_2022

Evaluation of residual mechanical performance of damaged conductor strands due to AC fault arcs for rational repair of overhead line

Keisuke SUGITA*, Tomoaki SEI, Tomoki MIYISHI, Satoru YOSHIDA

Introduction

- Some strands of conductor for overhead transmission lines passing through various environments are sometimes melted by an AC fault arc.
- The tensile strength of the melted conductor is weakened due to a decrease in cross-sectional area and heating.
- Melted strands in a conventional internal rule are evaluated as being completely broken regardless of the level of melted damage.
- This report introduces a method for visually estimating the residual strength of a conductor by evaluating the relationship between the damage level in a visual inspection and the mechanical residual performance of the melted conductor.

Evaluation target and test method

- The specimens are conductors that have been actually damaged by AC fault arcs (ACSR 80–610 mm² applied to transmission lines of 77 kV or less).
- The tests were carried out by disassembling the conductor into straighter strands and the tensile strength of the strands was measured with a tensile strength tester.

Estimation of residual tensile strength of melted strands

 It is known that the tensile strength of the strand depends on the cross-sectional area. However, it is not easy to determine the cross-sectional area of the melted strand. In order to simply index the damage level, the results of the strand tensile test were evaluated as parameters of "melt length", "melt width" and "melt depth" respectively.

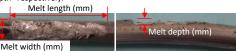


Figure 1 An example of a strand damaged by an AC fault arc

 It was confirmed that the residual tensile strength of the melted strand was well correlated with the melt depth. Therefore, certain tensile strength can be expected depending on the appearance of damage level. (Table I and Table II are criterion of residual strength based on test results)

Table I Criterion for determining the residual strength of the melted strand

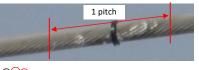

Damage level	Major	Minor	
Strand diameter	All strand	Diameter <	Diameter ≥
Stranu ulameter	diameter Ø3.8mm		Φ3.8mm
Evaluation of strength ratio	0%	50%	66%
Number of strands evaluated as broken	1	1/2	1/3

Table II Comparison of appearance of damage level

Evaluation of repair method for damaged conductor using new method

- In the conventional method, a strand is evaluated as broken even if there is only minor damage. On the other hand, according to the new method, minor damage to a strand is estimated to reduce the tensile strength by 1/2 or 1/3.
- The equivalent number of broken strands is 20% or less of the total number, and a simple repair (Repair with armor-rod) can be applied based on technical internal rules.

 Slightly melted strands due to AC fault arc (minor damage)
Aluminium strand
Steel strand

Figure 2 An example of appearance of a damaged conductor for evaluating repair method (ACSR 410 mm²)

Figure III Comparison of repair methods (ACSR 410 mm²)

Category	Conventional method	New method
Damage level	Minor	Minor
Number of strands evaluated as broken by damage level	1	1/3
Number of melted strands	9	9
Equivalent total number of broken strands	9	3
Repair methods [*]	Conductor replacement	Repair with armor-rod

*Internal rule in a simple repair test with an armor-rod

- Equivalent number of broken strands is within 6 (within 20% of the total number of aluminium strands)
 ⇒ Repair with armor-rod
- Equivalent number of broken strands is 7 or more (over 20% of the total number of aluminium strands) ⇒ Replace conductor
- •Total number of aluminium strands of ACSR 410 mm² is 26

Conclusion

- This paper shows a simple method by which the residual tensile strength of an (T)ACSR that has melted due to an AC fault arc can be estimated by looking at the strand damage level in a visual inspection.
- The applicable conductor size for this method is 160 mm² and over and this method is also applicable to electrical damage (lightning damage and so on) not only to AC fault arc.
- The new method has achieved significant results such as paving the way for expanding simple repairs of damaged conductors and reducing the costs of replacing damaged conductors.

http://www.cigre.org

Study Committee B2

Overhead Lines

10632 2022

Evaluation of residual mechanical performance of damaged conductor strands due to AC fault arcs for rational repair of overhead line continued

Evaluation target

- Short-circuit faults resulting from ice or snow accretion occur mainly on transmission lines of 77 kV or less in our service area. Therefore, ACSR 80-610 mm², which is applied to transmission lines of 77 kV or less was selected as the evaluation target.
- The specimens are conductors that have been actually damaged by AC fault arcs (Table IV).

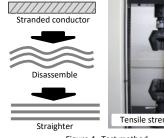
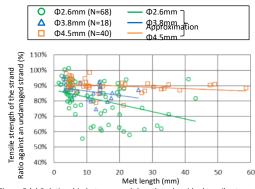
Table IV Specimens				
Conductor type and nominal aluminium area (mm ²)	Stranding and strand diameter (mm)		Age	
	Aluminium	Aluminium clad steel	(years)	
ACSR/AC 80	15/ф2.6	7/ф2.6	10	
ACSR/AW 160	30/ф2.6	7/ф2.6	32	
ACSR/AW 410	26/ф4.5	7/ф3.5	32	
TACSR/AC 610	54/ф3.8	7/ф3.8	25	

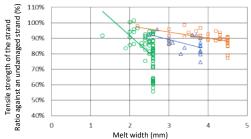
Slightly melted strands due to AC fault arc (have been evaluated as broken so far) \bigcirc : Aluminium strand

Steel strand with aluminium cladding

Figure 3 An example of a conductor damaged by an AC fault arc (ACSR/AW 160 mm²)

Image of the test method


Figure 4 Test method

Test result

As shown in Table IV, the ages are different, and the initial strength in routine tests is unknown. Therefore, the tensile strength of the melted strands was estimated based on undamaged strands of the same conductor to determine mechanical performance.

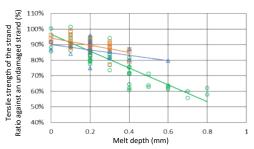


Table V Correlated variation of the relationship between damage level and tensile strength of the melted strands

Strand diameter (aluminium)	Coefficient of determination (R ²)		
	Melt length	Melt width	Melt depth
Φ2.6mm	0.1572	0.2215	0.7526
Ф3.8mm	0.1060	0.2690	0.2119
Φ4.5mm	0.0788	0.2760	0.3492
Total strand diameter	0.0337	0.0424	0.6536

http://www.cigre.org

Study Committee B2

Overhead Lines

10632_2022

Evaluation of residual mechanical performance of damaged conductor strands due to AC fault arcs for rational repair of overhead line continued

Estimation of residual tensile strength of melted strands

- If the melting depth is not found even for damaged strands, it is deemed that there is certain residual tensile strength.
- The melt depth that was considered to not be recognized was set at 0.5 mm in consideration of variations in visual inspection (set at a value of approximately -3σ in consideration of the variations in the test).
- The results of the studies make it easier to evaluate residual strength in a visual inspection.

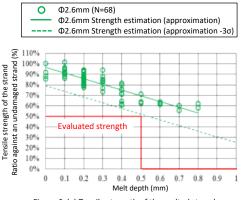
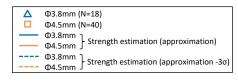



Figure 6 (a) Tensile strength of the melted strand $(\varphi 2.6 \text{ mm})$

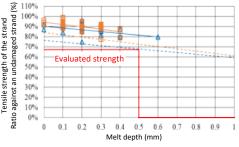
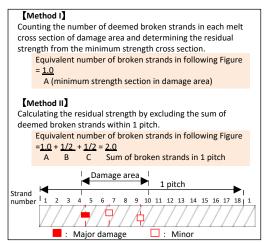



Figure 6 (b) Tensile strength of the melted strand $(\varphi 3.8, \varphi 4.5 \text{ mm})$

Estimation of residual tensile strength of Stranded conductor

- · Two kinds of strength estimation methods were examined.
- In order to meet the strength required by safety regulations without fail, method II which calculated the residual strength as being lower than the test results, was applied.

Egunage Concept of the estimating the residual strength

Table VI Comparison of methods to estimate residual tensile strength of a damaged stranded conductor

Conductor type	Test value	Estimated value			
	Strength Met Strength	Method I		Method II	
		Validity*	Strength	Validity*	
ACSR/AC	36.2	39.7	×	36.3	×
80mm2	50.2	35.7	Ŷ	50.5	^
ACSR/AW	76.5	77.0	×	68.2	0
160mm2	70.5	77.0	Ŷ	00.2	0
ACSR/AW	144.5	145.9	×	133.2	0
410mm2	144.5	145.9	^	133.2	0

*o : Test value ≥ Estimated value

× : Test value < Estimated value