

Study Committee B2

Overhead Lines

10766_2022

Operational Evaluation of RTV Coating Performance over 17 years on the Coastal Area at Jubail-SA

JAAFAR A. ALTHAWAB, MUSLEH A. ALAMERI Saudi Electricity Company – National Grid-SA

Motivation

- The operational performance of electrical network is dependent on the performance of its insulators. Lots of power interruptions occurred due to insulators flashover as a result of surface contamination level in harsh weather Different maintenance remedy actions were take place to resolve the insulators surface contamination issue. The best practice is the application of RTV coating on the outdoor porcelain insulators
- The aim of this study is to evaluate the operational performance of RTV coated insulators in harsh environment

Method/Approach

Followings steps/methodology were followed up to monitor the performance of RTV coating:

- Perform Visual Inspection Every 2 years.
- Perform hydrophobicity Classification test every 6 years using STRI 92/1 method
- Thermo-vision Inspection, corona Inspection and monitor arcing level when exist
- Perform Day & Night Inspection every 2 years. and during hi-humid days

Objects of investigation

 To evaluate the operational performance of RTV coated insulators in a harsh environment and track the hydrophobicity level and thickness changes on outdoor coated insulators located in Ghazlan P/P switchyard which is subjected to different type of pollution (Saline, desert & Industrial)

Experimental setup & test results

- Different type of insulators selected as case study samples (a transformer bushing, a circuit breaker bushing and a disconnector switcher insulator).
- Field testing results were recorded for tracking the performance at different weather condition.
- No single flashover incident related to RTV performance was recorded since appilication
- Slight thickness changes noticed over 17 years of operation.
- Oil leaks on the surface of coated trasnformer bushing may reduce the effectivness of RTV coating with years.

Discussion

- Minor cracks and aging on RTV coating were observed only at the portion close to the High Voltage side of some insulators.
- Some surface discolouration changes from grey to light black at the portion close to the H.V side.
- · No erosion or coating chalking was detected

Conclusion

- HC had a slight reduction on these monitored insulators but still at a good level.
- It is confirmed that the Operational performance of RTV coating and life of RTV coating is dependent on many factors such as the application method, material specification, monitoring method
- Continue performing minor and major preventive maintenance programs and record major changes in HC and plan for re-coating whenever HC class exceeded HC 4.
- The evaluation results indicate that Eastern Coastal Area is of a harsh environment and heavily contaminated area and any new T/L insulator shall be of SIR insulator and S/S outdoor bushings shall be either SIR insulators as well or RTV coated Porcelain

Study Committee B2

Overhead Lines 10766 2022

Operational Evaluation of RTV Coating Performance over 17 years on the Coastal Area at Jubail-SA

continued

INTRODUCTION

To secure a reliable power supply to bulk customers, different remedies had been taken such as improving specific creepage-distance of the outdoor porcelain insulators, then applying silicone grease and then performing high pressure washing demineralized water washing method to clean insulator surface.

In the end, the more effective method was introduce which is applying RTV Silicone Rubber Coating on the outdoor insulators, this is best in turn of operational perfromance and operational cost.

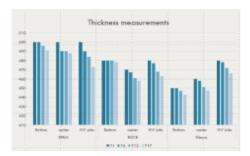
Physical Appearance of Coating Paint over the Case Study period:

Selected Samples

C	Overview	data of S	Sample Insula	itors
Equipment	mm/kV	V.L	Equipment Energization Date	Year of RTV Coating Application
Sample#1 XFRM Bushing	36	230kV	1977	2004
Sample #2 BOCB Insulators	32	230kV	1977	2004
Sample#3 Disconnect	32	230kV	1977	2004

Findings

	HC had a slight reduction on these monitored insulators but still at a good level.
√=	The results did not exceed HC3 level in 94% of the measured value during the overall test period.
Ċ	The hydrophobicity performance is usually sensitive to insulator surfaces subjected to any minor oil leaks.


Results of Hydrophobicity Classification

	XFRM			восв			Discon.		
Period	Bottom	center	H.V side	Bottom	center	H.V side	Bottom	center	H.V side
¥1	HC1	HC1	HC1	HC1	HC1	HC1	HC1	HC1	HC1
Y6	HC1	HC1	HC1	HC1	HC1	HC1	HC1	HC1	HC1
Y12	HC1	HC2	HC2	HC1	HC2	HC2- HC3	HC1	HC2	HC2
Y17	HC2	HC2	HC3- HC4	HC2	НС3	HC3- HC4	HC2	HC2- HC3	НС3

Weather Data

Weather data around the case study:					
 Humic	lity Level	More than 80% for (<u>Avr</u> . 17 days/month) between (July –Nov.) More than 90% for (<u>Avr</u> . 5 days/month) between (Aug –Dec)			
 Wind		Speed (Max) (22- 42) km/h Direction (N & NE, NW) wind come from inland and Gulf Sea			
Rain Precip	itation	Ave. 94 mm/year, Area was subjected to heavy rain on Nov.2004, Jan. 2007 and Dec. 2014 Only			
Temp.		10. – 54 C			

Thickness Measurment

http://www.cigre.org