

Study Committee B2

Overhead Lines

10775_2022

Design and protection criteria for passive loops on a 400 kV double circuit line

Piero BERARDI⁽¹⁾, Luca BUONO⁽¹⁾, Gianluigi GEMELLI⁽¹⁾, Francesco PALONE⁽¹⁾, Lorenzo PAPI⁽¹⁾, Alberto PICCININ⁽¹⁾, Roberto SPEZIE⁽¹⁾, Marco

(1)Terna S.p.A.

Motivation

- Effective solution for reducing public exposure to magnetic fields due to Overhead Lines (OHLs) near any public or urban areas;
- Whereas the allowable ICNIRP magnetic field limit for public exposure is 100 μT , the Italian law adopts a more challenging threshold of 3 μT for new HV/EHV OHLs.

Method/Approach

- A dedicated steel tubular double circuit tower was developed by Terna allowing the installation of loop conductors. Three passive loop conductors with a diameter equal to 40.5 mm will be installed to mitigate magnetic field induction.
- In order to maximize the shielding effect, while not exceeding the loop conductors ampacity, PS will be equipped with a Series Capacitance Compensation System (SCCS), with 4 mF capacitors.

Objects of investigation

- The first issue is related to the design and sizing of the capacitor banks: as in EHV series capacitors installation, a fault in phase conductors causes significant overcurrents and overvoltages on the capacitor units.
- A proper choice of the capacitors rated voltage, protective surge arresters, and by-pass switch is thus of paramount importance for a safe and reliable installation.
- A fault on a loop conductor is unnoticeable from conventional line protection. Terna investigated the possible fault scenarios, involving both permanent and transient faults.
- The paper deals with design and protection criteria of the PCLs.

Configuration

 Two loop conductors will be installed below phase conductors, whereas the third loop conductor above phase conductotors, in lieu of a shield wire. Tower cost increases by +20-25%, if compared to a standard solution, in terms of time, there are not significant increase.

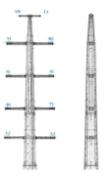


Figure 1 – Steel tubular tower with double circuit (R,S,T), shielding wire (SW) and loop conductors (L).

Discussion

- A short circuit analysis has been carried out by Terna with a software ATP-EMTP. Simulations results evidence that the worst condition is phase-phase to ground fault on the line terminal.
- Higher loop conductor must have a clearance distance equal or higher than 35 cm in order to guarantee the self extincion of secondary arc. Kizilcay's model of secondary arc has been implemented in ATP-EMTP.
- The maximum expected currents and voltages on passive loop conductors are about 1200 A and 950 V respectively.
- Fault on passive loop cannot be detected by OHL protection relay.

Conclusion

- Compensated loops can be an efficient solution to mitigate the magnetic field.
- The induced currents and voltages on compensated loop conductors are not an issue in normal operation;
- In case of external fault transient overvoltages arise on capacitor banks; therefore, surge arresters are able to guarantee a safe operation
- A possible protection relay, based on zero-sequence current measurement, has been introduced in order to discriminate internal and external faults.

Study Committee B2

Overhead lines

10775_2022

Design and protection criteria for passive loops on a 400 kV double circuit line

continued

Main characteristics

- The Series Capacitance Compensation System (SCCS) identified by Terna is composed by:
- a circuit loop bay (M1) for the connection of SCCS to 400 kV OHL and protection from overvoltage and overcurrent related to internal and external faults;
- a capacitive compensation bay (M2) for the connection of 4 mF capacitors banks in series with passive loop;
- a bypass bay (M3) for the connection of a resistiveinductive load to mitigate inrush current and specific energy of surge arresters, installed in parallel to the capacitors banks.
- A dedicated protection logic system is going to be developed by Terna in order to guarantee a safe operation of surge arresters and capacitors banks: in case of overvoltage, circuit breaker of passive loop (M1) will be switched off, whereas circuit breaker of the resistive-inductive load (M3) is going to be switched on, avoiding the increasing of surge arrester specific energy.

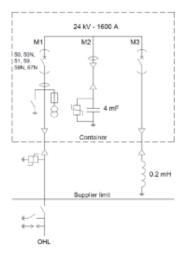


Figure 2 – Single line diagram of series capacitance compensation system for the 400 kV OHL between Colunga and Calenzano substations.

Capacitor banks	
Rated capacitance	4 mF
Rated voltage	1732 V rms
Rated current	1256 A rms
Surge arresters	
Continuous operating voltage	$\geq 1.5 \text{ kV}$
Temporary overvolrages (TOV)	2750 Vrms / 1s
Nominal discharge current	$\geq 10 \text{ kA}$
Residual voltage/Discharge voltage	5.4 kApeak – Ures ≤ 3.75 kV peak
Bypass load	
Rated inductance at power frequency	0.2 mH
Rated current	800 A
Short circuit current (Ikn)	20 kA
Specific energy	\geq 400 kJ

Table 1 - Main characteristics of SCCS equipment

Magnetic induction

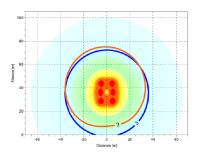


Figure 3 - Magnetic induction distribution when double circuit operates at 2310 A rated current: optimized double circuit with (orange) and without (blue) compensated loop conductors.

Study Committee B2

Overhead lines

10775_2022

Design and protection criteria for passive loops on a 400 kV double circuit line

continued

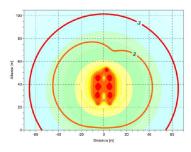


Figure 4 - Magnetic induction distribution when double circuit operates at 2310 A rated current: not optimized double circuit with (orange) and without (blue) compensated loop conductors.

Transient analysis

- The maximum short circuit impedance has been considered, corresponding to a short circuit current equal to 31.5 kA.
- Specific energy of surge arresters installed in parallel to capacitors banks attains 900 kl. Rated specific energy of surge arresters as a function of discharge current is between 4 and 10 kl/kkV.

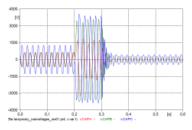


Figure 5 – Expected overvoltages on passive loop conductors due to external faluts (t=0.2 s fault time, t=0.3 s bypass switching-on).

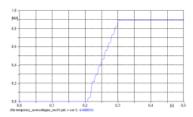


Figure 6 – Maximum specific energy of surge arrester due to transient overvoltages on passive loop conductors.

Arc extinction analysis

 Kizilcay's model of secondary arc has been implemented in software ATP-EMTP using type 94 component. Simulation results reported in Figure 7 evidence that, increasing clarence distance from 27 cm (according to IEC 60071-1) to 35 cm, the duration time of secondary arc current is reduced from about 250 ms to 30 ms.

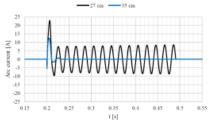


Figure 7 - Secondary arc current

Protection relay

- Zero-sequence current will be practically near to zero in case of external faults, whereas it will be on the order of thousands of amperes for internal faults.
- Neutral instantaneous overcurrent protection (50N) is needed in addition to the switches provided against faults on the overhead line (50, 51, 59, 67N). In case of a fault on the capacitor banks, only zero-sequence voltage arises and, therefore, a neutral overvoltage protection (59N) is necessary; as the OHL protection relay sees the same component, a time delay will be applied on neutral overvoltage protection of SCCS.

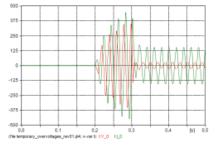


Figure 8 – Zero sequence voltage (red), and current (green).

http://www.cigre.org