

Study Committee B2

Overhead Lines

Paper 10976_2022

Development of Aluminium Tower for 420 kV AC line to reduce environmental impact and safety risks under construction

Gilles SABATIER-OLNE EFLA AS Andreas LEM Statnett SF Øyvind WELGARD Statnett SF

Motivation

- Reduce helicopter use in construction
- Lower environmental impact
- Reduce construction costs
- Improve safety

Method/Approach

- Reduced tower weight reduces helicopter use
- Aluminium lighter than steel
- Weight saving tower geometries with fewer parts
- Quicker assembly reduces construction cost
- Holistic approach: quality, safety, cost, environment

Objects of investigation

- Aluminium properties in structural design
- Technical solutions for assembly and production
- Environmental impact steel versus aluminium

Experimental setup & test results

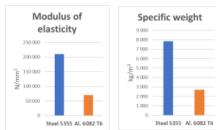
- Buckling tests of profiles
 - Eurocode up to 10 % conservative
- Wind tunnel testing of profiles for vibration
 - Use asymmetrical cross-sections
 - Full scale test of tower prototype
 - 130 % of design load

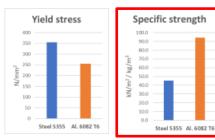
Discussion

- · High strength-to-weight ratio of aluminium
- Great flexibility in cross section design
- · Much lower buckling capacity when slender
- Bolted connections better than welding
- Increased susceptibility to Vortex-Induced Vibrations

Conclusion

- Tower weight reduced by 40%
- Helicopter reduction estimated 15-30%
- CO2-emissions halved

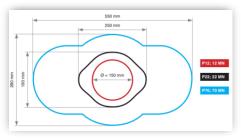




Study Committee B2 Overhead Lines Paper 10976_2022

Development of Aluminium Tower for 420 kV AC line to reduce environmental impact and safety risks under construction continued

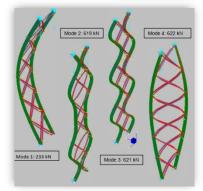
Properties Steel versus Aluminium



High flexibility for cross-section design

- Theoretically, any shape can be created
- In practice, some rules apply that constrain the shape design:
 - Dimensions
 - Thicknesses
 - Area of voids
 - o Asymmetries
 - o ...

Example of profiles cross-sections developed for the prototype tower

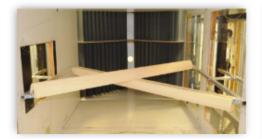


Example of dimension limits for profile extrusion (for 3 different press sizes)

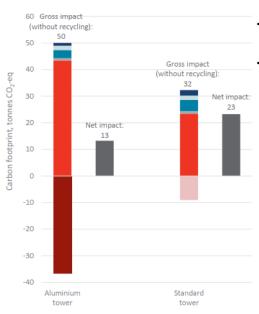
Aluminium not optimal for slender members

- Buckling capacity drops quicker than for steel in function of slenderness
- Must be compensated by using more material and place it as far as possible from the neutral axis
- Less efficient usage of material (low stresses)
- Reduced weight gain for slender member

http://www.cigre.org


Study Committee B2 Overhead Lines

Paper 10976_2022


Development of Aluminium Tower for 420 kV AC line to reduce environmental impact and safety risks under construction continued

Higher susceptibility to vibrations

- Longer lighter members -> increased risk for Vortex-Induced Vibrations
- Asymmetry of cross-section shape is beneficial
- · Half-moon profile in cross-bracing well suited

Reduced carbon-footprint

- Half of CO2-emissions with aluminium towers (compared to steel towers)
- Most of the gain comes from recycling at the end of the lifetime of the transmission line
- Reduction of emission depends on the origin of the aluminium (outside Europe, Europe or Norway)
 - A-D: Net impact
 - C1-C4: EoL: Dismantling and transport
 - B1-B4: Operation and maintenance
 - A4-A5: Transport and Construction
 - A1-A3: Foundations manufacturing
 - A1-A3: Tower manufacturing
 - D: EoL: Steel recycling
 - D: EoL: Aluminium recycling