

Study Committee B2

Overhead Lines

11144_2022

Full-Scale Tests for the Purpose of Verifying the Method for Determining the Boom of the Wire Sag by the Period of its own Oscillations

Danil YAROSLAVSKY1*, Marat SADYKOV1, Mikhail GORYACHEV1

¹Kazan State Power Engineering University

Motivation

The efficiency and reliability of energy transmission is determined by the state of the power supply networks. In this regard, a method was proposed for determining the conductor sag by the period of its own oscillations. To verify the developed method, full-scale tests were carried out on 110 kV overhead lines.

Approach

The overhead line sag is calculated by the formula:

f ≈ 0.31T ²	(1)
where: f - conductor sag, m; T is the oscillation	n period in
seconds.	

Objects of investigation

Fig.1. Photo of the span with supports, date 05.03.2021

Experimental setup & test results

Fig. 2. Control device of the overhead line condition monitoring system installed on the conductor. This device measure conductor deviations and T parameter

Fig. 3. Measuring installation for video recording of conductors position. The numbers 1-6 indicate the numbers of the investigated phase conductors

Fig. 4. The front panel of the program «Program for processing video recordings» (method 1 with the developed method)

Date	Conductor sag, m					
	Cond Nt1	Cond. M2	Cond. Mt3	Cond. Mr4	Cond N6	Cond. Net
05 mar	9.478	9.633	9.432	9.896	19.217	11.40
06. mar	9.372	9.534	9.35	9.905	30,209	11.3
07. mar	9.287	9.448	9.254	9.722	10.129	11.24
09. mar	9.117	9,265	9.071	9.538	9.998	11.09
10. mar	8.868	9.028	8.83	9,293	9.766	30.56
17. mar	9.184	9.322	9.165	9.608	30.012	11.15
18. mar	9.418	9,563	9.371	9.835	10.178	11.36
05 apr.	9.616	9.768	9.575	10.027	38,259	11.55
14 am	10.35	10.51	10.394	10.844	11.067	11.90

Fig. 5. Conductor sag obtained by photogrammetry (method 2)

Fig. 6. Comparison of the results of calculating the sag in two different ways (method 1 and method 2). The numbers 1-6 indicate the conductor numbers.

Conclusion

The reliability of the developed method for determining the conductor sag by the period of own oscillations of the conductor is confirmed. The results can be applied in the previously developed system for monitoring the state of an overhead power transmission line.

