

Study Committee B3

Substations and Electrical Installations Paper B3-10674 Life Cycle Assessment comparison of different high voltage substation technologies using SF₆ and alternative insulation gases

> Lukas TREIER, Maxime PERRET, Yannick KIEFFEL, Bertrand PORTAL, GE Renewable, Grid Solutions

Identify GHG emissions in energy sector to reduce them - on time

- IPCC states clearly that actual climate actions isn't sufficient to limit the warming to 1.5°C nor 2.0°C.
- A drastic GHG emissions reduction is required: this imply to identify the sources to master and limit them.
- The complete life cycle of a product should be considered to avoid pollution transfer from one source to another.
- LCA (Life Cycle Assessment) is the recognized method, standardized in the ISO 14040 and ISO 14044 (O)

Parts manufacturing

parts, porcelain, etc.

Fabrication of the parts, from casting, to machining and transport to the factory

HV switchgear: Castings, machined

Assembly and testing

Assembly of the equipment, routine testing

HV switchgear: Factory and offices energy and water consumption, accidental gas emissions, etc.

Raw materials

Minerals extractions, processing into usable raw material, recycling

HV switchgear: Aluminum, steel, copper, etc.

End of life

Materials are separated and valorized when possible (energy / water consumption, results are variable:

Potentially up to 100% recyclable Recyclable with some losses (or re-use)

Not recyclable,

HV switchgear: Recycled aluminum cannot be used for pressure vessels, epoxy not recyclable, copper, etc. Life Cycle Assessment

Transport

Transport occurs at every step of the product's life

HV switchgear: Transport depending on production and application locations

Use phase

From the equipment delivery until decommissioning, including the complete related emissions

HV switchgear: Joule losses, gas emissions, building consumption, service and maintenance team emissions, etc.

7.....

LCA, complex but powerful

- LCA is a powerful tool for evaluating the environmental footprint (CO_{2 equ.}) of a product.
- Implementing a LCA is a complex process. It is advised to get expertise from a certified third party.
- This paper's ambition is to provide an objective comparison tool that anyone can use or improve.

"LCA is the right approach to evaluate the global impact on a technological choice." [EU "Buying green handbook] "LCA is the state-of-the-art tool to evaluate the impact of products and systems on the environment." [T&D Europe]

http://www.cigre.org

Study Committee B3

Substations and Electrical Installations Paper B3-10674 Life Cycle Assessment comparison of different high voltage substation technologies using SF₆ and alternative insulation gases

> Lukas TREIER, Maxime PERRET, Yannick KIEFFEL, Bertrand PORTAL, GE Renewable, Grid Solutions

An objective LCA simplification for pre-studies

Reference model - Inputs

Very few manufacturers make their LCA / parameters publicly available. Data for SF₆ and C4-FN are published.

Studied case: GIS 145 kV - 3 technologies

- It is possible to rely on published information to extrapolate. T&D Europe: Vacuum footprint = 120% SF₆ footprint.
- The using phase parameters may vary a lot depending on the user. General values are provided.

Typical material masses for 145 kV GIS Typical material distribution Building and concrete 35000 4500 (mass) 4000 30000 3500 Copper Epoxy <u>9</u>25000 ³⁰3000 resin 20000 Å 2500 a 15000 a 2000 Steel Se 1500 ss ₽ 10000 1000 5000 500 Aluminum 0 0 SF6 C4-FN Vacuum+Air SF6 C4-FN Vacuum+Air Concrete Steel Time % Current (A) C4-FN Source Loss SF_6 Gas Air mixture 75% 625 Bay 92 μΩ Leakage 20% 1500 0.1%/y 0.5%/v 0.5%/v 100 W rate IEC ITR Source 5% 2500 GWP 160 W 640 IV 100% 894 23500 Mass (kg) 64 31 32 Energy mix CO₂-equ (t) 1504 19.8 237 g/kWh http://www.cigre.org 2/3

Study Committee B3

Substations and Electrical Installations

Paper B3-10674

Life Cycle Assessment comparison of different high voltage substation technologies using SF₆ and alternative insulation gases

> Lukas TREIER, Maxime PERRET, Yannick KIEFFEL, Bertrand PORTAL, GE Renewable, Grid Solutions

Reference results - Distribution and overview

LCA is based on standards, like the ISO 14040 / 14044, and back-up by major entities.

Grey energy pollution from manufacturing

Summary over time of the emissions

The CO₂-equivalent emissions can be displayed in time. Data are the same as presented above.

- Immediate reduction is necessary to reach Paris Agreement. Emissions to be cut by 2030-2040.
- Manufacturing's pollution happen now, often partially in high-emissions countries, and therefore not affected.

ISO based methodology shows that C4-FN mixture solutions offer the best and fastest CO₂-equivalent reduction