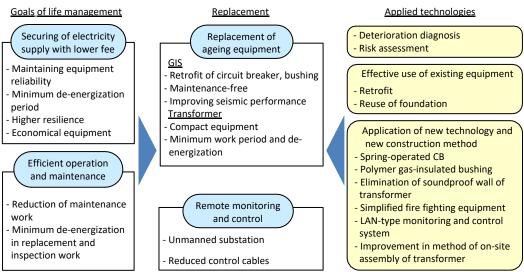


Kansai Transmission and Distribution

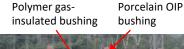
Study Committee B3 Substations and electrical installations

Life management and improvement of reliability, maintainability and operability of 500 kV substations


Koichi TAKETA, Yasuhito HASHIBA, Shinya KAWANO (Kansai Transmission & Distribution Inc. Japan) Keita ITO, Mieko NAKANO, Hiroyuki HAMA (Mitsubishi Electric Corp. Japan)

Motivation

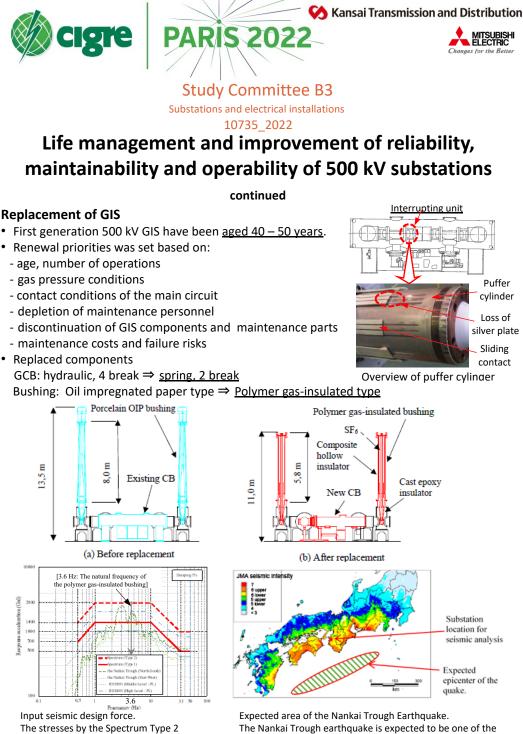
- •Concerns on 500 kV substation reliability as first equipment are now reaching 50 years old. •Resilience of power equipment needs to be strengthened against natural disasters.
- •Maintenance personnel are declining due to a decreasing birth rate and ageing population.
- •Life management of power equipment needs to be considered.
 - ⇒ Upgrade 500 kV substation applying GIS, transformer and LAN-type monitoring system with latest technologies.



Approach for life management of 500 kV substation

Implementations

- •Old double-pressure circuit-breakers and oil-impregnated paper (OIP) bushings of 500 kV GIS were replaced with <u>spring-operated CBs</u> and <u>polymer gas-insulated bushings</u>.
- •500 kV transformers were upgraded to new ones with polymer gas-insulated bushings and vacuum valve on-load tap changer (OLTC). Site assembling work period was minimized, which contributed to <u>short</u> <u>de-energization duration</u>.
- •LAN-type monitoring & control system was applied, which made substations unmanned and reduced amount of control cables and their construction costs.



Overview of existing and replaced bushings

Details in the following slides

http://www.cigre.org

The stresses by the Spectrum Type 2 were all below the whole GIS allowable

The Nankai Trough earthquake is expected to be on e largest earthquakes (magnitude 9 class)

Construction

- Existing foundation for the disconnector, the current transformer (CT) and the CB were reused.
- Only the CB was upgraded in order to avoid the de-energization of the main busbar and to use the existing equipment effectively.

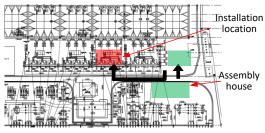
Benefits

- Spring CB reduces failure rate, requires less regular inspection.
- Polymer gas-insulated bushing improves the whole GIS seismic performance whose response acceleration is more than 1.3 times of high level specified in IEEE 693-2018.

🔀 Kansai Transmission and Distribution

Study Committee B3 Substations and electrical installations 10735 2022

Life management and improvement of reliability, maintainability and operability of 500 kV substations


continued

Replacement of transformer

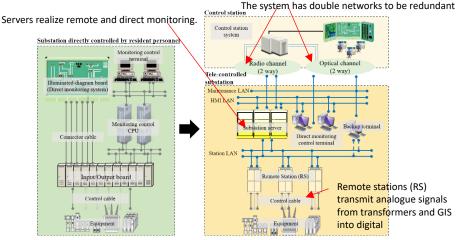
- Comprehensive evaluation was made on the existing aged transformers based on:
 age
- static electrification evaluation
- dissolved gas analysis in oil
- average degree of polymerization
- oil leakage

Reduction of de-energization duration

- To minimize the de-energization duration for replacing transformers,
- Re-use of existing foundation
- Assembling new transformer at another place
- The new transformer was moved to the installation location with bushings equipped

Improvement in replaced transformer

Polymer gas-insulated bushingElimination of soundproof tanks


- Simplification of fire extinguishing

Transformer

⇒Shortening of outage duration by 15 months

LAN-type monitoring & control system

- The existing direct monitoring and control panels (illuminated panels) were replaced with LAN-type monitoring and control systems.
- The system transmit large amount of information with less control cables.
- All the seventeen 500 kV substations have been unmanned by 2019.

Renewal of monitoring and control system in 500 kV substation

http://www.cigre.org

system

Vacuum valve OLTC