

Chanaes for the Better

TOSHIBA

Study Committee B3

Substations and Electrical Installations

Paper ID_B3-10736

Management of SF₆ gas leakage and technical guidelines on application of substation equipment using SF₆ alternative gases in Japan

K. Nakamura *1, S. Tsukao *1, T. Nishioka *2, K. Taketa *2, T. Uchii *4, H. Hama *5 *1: TEPCO Power Grid, Inc. *2: Chubu Electric Power Grid Co., Inc. *3: Kansai Transmission and Distribution, Inc.

*4: Toshiba Energy Systems & Solutions Co. *5 Mitsubishi Electric Co.

Motivation

- SF₆ gas is used in GIS and other substation equipment around the world. Recently SF₆ alternative solutions for switchgear have been widely discussed since SF₆ has an extremely high GWP.
- SF_6 was designated as one of the greenhouse gases to be reduced at COP 3 held in Kyoto, Japan in 1997
- In response, industries using SF₆, such as electricity T&D, have strictly controlled and curbed the amount of SF₆ released into the atmosphere.

Method /Approach

- Introduction of current status of SF₆ gas leakage management from substation equipment in Japan.
- Establishment of an "SF₆ Alternative Gas Study Group" composed of experts from all electric power utilities, major manufactures and academia in Japan. The purpose was to develop guidelines for the introduction of SF₆ alternative technologies. Namely, the "Seven Requirements for SF₆ Gas Alternative Technology".

Management and reduction of SF₆ gas emissions in Japan

 Following the designation of SF₆ gas as a GHG at the Third Conference of the Parties to the United Nations Framework Convention on Climate Change (COP3) in 1997, the relevant industries, including electric utilities, electrical equipment manufacturers and gas manufacturers, formulated the SF₆ Gas Handling Standard for Electricity (in 1998).

- The Federation of Electric Power Companies of Japan (FEPC) and the Japan Electrical Manufacturers' Association (JEMA) formulated a Voluntary Action Plan for SF₆ gas emission reduction, setting voluntary reduction targets of less than 3% for emissions during inspection and less than 1% for emissions during disposal. (in 1998)
- To achieve the target, Japanese companies dealing with SF₆ gas are engaged in the following three activities.

-Preventing leaks by ensuring that the gas is collected during equipment inspections.

-Establishing methods for recovery and re-use from waste equipment.

-Strengthening the SF_6 gas management system by using a control ledger.

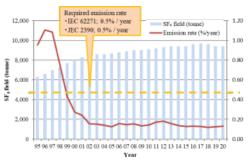


Figure 1 Quantity of SF₆ gas inventory and emissions from electrical equipment in Japan

		~ -	-					~	
Table	1	SF ₆	Gas	Handling	Standard	ın	Japan	tor	Electric Power

14 minute	Standard value	
Item	Standard Value	Remarks
Natural leakage	0,1% yearly	According to field measurement data of gas leakage
rate from		
equipment		
Final pressure for	[Manufacturing/Installing/Inspecting]	In consideration of the balance between equipment
evacuation	- 0,015 MPa abs or less	outage and SF ₆ evacuation time
	[Decommissioning]	C 0
	- 0,005 MPa abs or less	
Standard for gas	[Purity]	[Purity]
quality	- more than 97%	Level that does not affect the interrupting
	[Moisture level]	performance
	- interrupting current; 150 ppm vol or less	[Moisture]
	- not interrupting current; 500 ppm vol or less	Level that does not affect creepage withstand
		1 0
	[Decomposed gas]	voltage of insulation
	 not detected with indicator tube 	

Study Committee B3 Substations and Electrical Installations

stations and Electrical Installation

Paper ID_B3-10736

Management of SF₆ gas leakage and technical guidelines on application of substation equipment using SF₆ alternative gases in Japan

continued

Establishment of SF₆ Alternative gas Study Group (in 2016)

 SF₆ Alternative gas Study Group (The study group) was established composed of experts from all electric power utilities (12), major switchgear manufactures (6), academia (6) and observers (TDGC* and JEMA). The group developed a guideline for the introduction of SF₆ alternative technologies called the, "Seven Requirements for SF₆ Gas Alternative Technology".

Figure 2 Structure of the SF₆ Alternative Gas Study Group

Major activities of the Study Group

- In order to appropriately promote the development of SF₆ alternative equipment, it is necessary to internationally communicate the Japanese view:
 - ✓ on the future handling of SF₆ gas,
 - on the development of equipment using SF₆ alternative technologies.
- The study group has developed the so called 'Seven requirements' as a guideline for the introduction of SF₆ gas alternative technologies.

- The study group identified -EHS, Service condition, Stable supply and Gas handling as the highest priorities.
- The philosophies of the 'Seven requirements' are consistent with the various position papers that have been published mainly in Europe.
- It is important to have discussions and to reach a common understanding of the 'Seven requirements' through international communities such as CIGRE.

Details of Seven requirements

- Environment Health Safety (EHS) : Impact on human health and safety and therefore the environment are the most important requirements.
- Service Condition : Complying with full range of temperature between -20°C and +40°C to allow outdoor installation.
- Stable Supply: Desirable to have more than one supplier to avoid a monopoly. In addition, it is important to secure a manufacturing base located domestically in order to avoid material depletion, to maintain manufacturing technology, and to enable easy access and procurement.
- Gas Handling: Solutions enablee simplified gas handling. Also, the gas mixture ratio shall be correctly controlled and adjustable for long-term use and multiple current switching / interruptions.
- Life Cycle Cost: Reasonable life cycle cost in order to proceed with the replacement of SF₆ equipment within a limited budget.
- Footprint: The ability to meet spatial limitations imposed by the replacement of ageing SF₆ equipment in substations.
- Voltage Coverage: Desirable to support up to 500 kV voltage class, in the future (the maximum working voltage of the transmission system in Japan).

Table II "Seven requirements for SF₆ alternative gas technology in Japan"

No.	Category	Requirement				
1	EHS	Especially, toxicity of decomposition gas and decomposition				
2	Service Condition	Normal use conditions specified in the standard				
3	Stable Supply	Stable supply of alternative gases is possible in the future. It is desirable that gas can be supplied by multiple suppliers				
4	Gas Handling	Simple handling of SF ₆ alternative gas				
5	Life Cycle Cost	Life cycle cost is equivalent or reasonable to SF ₆ gas equipment				
6	Footprint	Replacement in locations where installation space is limited				
7	Voltage Coverage	Support up to the maximum operating voltage of 500 kV-63 kA				

Study Committee B3

Substations and Electrical Installations

Paper ID_B3-10736

Management of SF₆ gas leakage and technical guidelines on application of substation equipment using SF₆ alternative gases in Japan

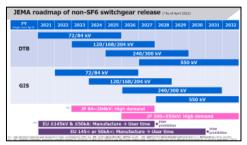
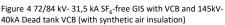
continued

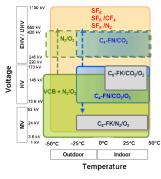
Workshops and Symposia

- An open workshop organized by the Study Group and a symposium organized by the Institute of Electrical Engineers of Japan (IEEJ) have been held.
- IEC 62271-4, Handling procedures for gases for insulation and/or switching, is presented at the symposium. The safety factors of alternative gases based on occupational exposure limits-time-weighted average (OEL-TWA) values are introduced as a safety evaluation in case of gas leakage, which attracted much attention.

Development of SF₆ alternative gas technologies and JEMA roadmap

- JEMA (Japan Electrical Manufacturers' Association) is an industrial association that covers T&D fields.
 "The SF₆ Alternative Technology Task Force" was established in August 2021, composed of Japanese 7 MV/HV switchgear manufacturers; namely, Toshiba ESS, Mitsubishi Electric, Hitachi, Meidensha, Fuji Electric, Nisshin Electric, Takaoka-Toko.
- The Task Force developed a roadmap of non-SF₆ switchgear release as a summary of a questionnaire-based survey to the 7 manufacturers, according to which, as Figure 3 shows, that e.g. 300 kV GIS will be available from 2026 through 2031 by multiple manufacturers.


Figure 3 JEMA roadmap for Alternative gas Switchgear in Japan URL: https://www.jema-net.or.jp/English/pis/sf6roadmap.html

Future development with SF₆ alternative gas technologies

- There is currently no gas that is equivalent to SF₆ in terms of safety, reliability, economy, and compatibility while eliminating environmental risks.
- VCB + natural-origin gases would be currently evaluated to be the most promising in the area of the high voltage (HV) class and lower.
- On the other hand, no effective solution has been found yet in the range of extra high voltage (EHV) and above.

 Dashed line area of C₄-FN/CO₂: 420 kV GIL, 245 kV Instrument transformers,
 Dashed line area of N₃/O₂: 420 kV and 245 kV Instrument transformers,
 Solid line area of the others: GIS including switching components like circuitbreakers, disconnectors and earthing switches,

- Dashed line with arrow: Future perspective.

Figure 5 Overview of current status and future perspective of applications of ${\rm SF_6}$ alternatives

Conclusions

- It is important and indispensable to continue to make thorough efforts to minimize atmospheric SF₆ emissions.
- Japanese electric power companies, equipment manufacturers, and academic experts have been working and continue together on the research and development of alternative technologies to SF₆ gas.
- The cost of the equipment using SF₆ alternative gas technology is expected to increase compared to the equipment using SF₆ gas. More specific evaluation methods, standards, and indicators are needed.
- It is important to share the basic data of ${\rm SF}_6$ alternative gases such as switching characteristics and toxicity evaluation throughout the CIGRE community.

http://www.cigre.org