

Study Committee B3

Substations and Electrical Installations

10894 ID_2022

420kV GIL retrofit guidelines with fluoronitrile-based gas mix

Thibaut MAUFFREY General Electric – Grid Solutions

To support electrical consumption growth (that is expected to increase 50% between 2012 and 2040) there is a demand to develop grid network and build new GIS substations. Climate change is a reality and an alternative to the insulating medium SF_6 (a F-gas with an extremely high Global Warming Potential) is necessary and urgent.

Fig.1 - Overview of SF_6 application in electric transmission industry.

source : Meteo France Fig.2- Global warming, temperature increase.

1970's	1997	1999	2006	2007	2008	2009 20	10 2014	2015	2016	2017	2020
Kyot SF ₈ Gree	o Protocol listed as a nhouse gas SF R	US EPA 6 Emission Reduction	EU F-Gas Regulation	Califor obal Wa	COP15 reduce by 40 b (i)	GHG emissio o 70% by 205 vs. 2010) US EPA fandatory Re d Greenhouse	ns New EU F-gas Regulation (emissions to be cut 2/3 by 2030 vs.2014) porting Gases	COP21 P Agreeme 196 count commit reduce th GHG emission	aris COP2 ent Agre tries entr to fo eelr	t1 Paris ement y into proe	EU Target to cut GHG Emissions: 20% by 202 40% by 202 Carbon neutral by 2050

Fig.3- Regulation and restrictions of using F-Gas over the past decades:

Supported and encouraged by authorities, also reinforcement by regulation against F-Gas, manufacturers propose more and more new SF₆-free products.

To adapt these new regulations to existing equipment, what would be the pathway?

Proposing a pathway to retrofit existing GIL, by replacing SF₆:

- a) Selection of a SF₆ alternative;
- b) Technical Validation process for retrofitting existing installation;
- c) Certification program.
- d) Environmental impact study

Study Committee B3

Substations and Electrical Installations

10894 ID_2022

Way to retrofit 420kV GIL with fluoronitrile-based gas mix

A. SF₆ alternative

continued

 SF_6 has incredible technical properties but an enormous impact if released to atmosphere. Specification to replace has a lot of requirements, which can be grouped in different categories:

- Environmental impact;
- Safety for users;
- Technical Performances;
- Cost & Certification.

A mix of fluoronitrile and CO₂ has been selected to provide an alternative to SF₆.

It is necessary a higher pressure than SF_6 to reach similar insulation properties, leading to a technical validation of associated enclosures.

B. Technical Validation Process

1) Selection of compartment to be retrofitted:

Since there are different properties between Fluoronitrile and CO₂, only passive compartments may be selected to project scope.

2) Validation of technical properties for existing GIL:

- Stress withstand:
 - Dielectric withstand;
 - Pressure/mechanical withstand.
- Behavior in the range of use:
 - Lake of liquefaction;
 - Heating behavior.

Technical feasibility not ok: out of possible working area. Required pressure to withstand dielectric stress is too high for existing enclosure design.

Technical feasibility ok: under working area.

Study Committee B3

Substations and Electrical Installations

10894 ID_2022

Way to retrofit 420kV GIL with fluoronitrile-based gas mix

continued

C. Certification program:

IEC 62271-203 stated a series of types-test to ensure both safety and technical performances. Here is an example of validation procedure for 400 kV and 550 kV GIL, considering a retrofit for passive compartments:

Tupo of tost	Values checked					
rype of test	420kV	550kV				
Lightning impulse	± 1425kV	± 1550kV				
Switching impulse	± 1050kV	± 1175kV				
Power frequency	650kV	710kV				
Partial Discharges	<5 pC ar 291kVp/V2	<5 pC ar 381kVp/V2				

For temperature rise test, a theoretical calculation can be conducted, if a reference model is available.

SEE. Free min	Filling	Bar Ø100mm						
Sho-meeting	Pressure	Enclosure Th. Smm	Enclsoure Th. 7mm					
CENACO	4.7 Bar R	64	62					
C4F3H + CO2	5.5 Bar R	62	59					
	4.7 Bar R	67	66					
$C_{4}F_{7}N + O_{2} + CO_{2}$	5.5 Bar R	65	63					

Temperature rise (in K°) for fluoronitrile-based gas mix.

D. Environmental impact study for a reference GIL (100m of 420kV)

- · Low raw material consumption, manufacturing and shipping lead times are drastically reduced
- For 100m of 420kV GIL, example of potential savings are :
 - Reduction of C0₂ equivalent footprint of 16240 tons;
 - Reduction of leakage impact of 630tons. (leakage rate of 0.5% during 40years)

SF₆-freeGIL GIS

*Evaluation to be performed project per project for accurate figures

Conclusion

- Retrofitting a SF₆ GIL with C4-FN mix is submitted to various conditions, but when possible, it allows end-users to modernize installed base.
- It is a cost effective solution as most parts are reused and SF₆ volume is reduced
- Environmental impact is reduced and has immediate effect
- Lifespan SF₆ assets is extended when it could be condemned and dismantled when SF₆ ban rules will be applied