

Study Committee B3

Substations and Electrical Installations

Paper ID_11079

Feasibility Tests of a 320 kV Gas-insulated DC Switchgear with Clean Air

Karsten JUHRE¹, Maria KOSSE¹, Christoph KLEIN¹, Ronald PLATH² ¹Siemens Energy, Germany ² Technische Universität Berlin, Germany

Motivation

- Development of SF₆ technology-based DC GIS was driven by HVDC offshore installations, to enable space reduction of DC switchyards up to 95%
- Increasing demand for greenhouse-gas free solutions for enhanced sustainability of the power systems

DC-specific phenomena and testing

- Basic physical phenomena at DC voltage, for example temperature and time dependent electric field distribution and charge accumulation, need to be considered for design and testing
- Specific test recommendations for gas-insulated DC systems are given in CIGRE TB 842

Properties of Clean Air

- Clean Air consists of 80% N₂ and 20% O₂ (synthetic air)
- No global warming potential (GWP = 0), no ozone depletion potential (ODP = 0), not toxic, very stable, well known material compatibility
- Reduced insulation strength compared to SF₆
- F-gas free: Simple gas handling, no gas recycling required, no greenhouse gas reporting, no risks concerning CO₂ compensation and taxes
- Clean Air is commercially available worldwide, from several manufacturers
- Proven technology in AC applications

Feasibility Study tasks

- Determine requirements on ±320 kV DC GIS
- Feasibility in terms of rated current
- Gas pressure withstand capability
- Electric insulation performance
 - High-voltage tests
 - · Deductions for non-tested conditions
- Clean Air insulation basics
 - Surface charge accumulation
 - Detectability of imperfections in Clean Air
 - Partial discharge measurements
 - Detectability of protrusions
 - Particle movement and detectability

Synthetic Air 80% N₂ + 20% O₂

72.5 KV	145 kV	245 KV	420 kV
0			
0			
			-

Conclusions

- A feasibility study examined and confirmed the applicability of Clean Air for DC GIS at a nominal voltage level of ±320 kV.
- Relevant requirements were mirrored within calculational and experimental investigations covering dielectric, mechanic, and thermal aspects.
- Limit tests on a DC GIS assembly revealed the dielectric performance of the Clean Air insulation.
- Furthermore, the partial discharge behaviour of typical imperfections were examined in detail in Clean Air and compared to SF₆ insulation.
- Since future projects will increasingly feature the voltage class of ±525 kV, upgrade development needs to be performed to also provide ±550 kV DC GIS using Clean Air insulation.

Study Committee B3

Substations and Electrical Installations

Paper ID_11079

Feasibility Tests of a 320 kV Gas-insulated DC Switchgear with Clean Air

continued

Requirements on ±320 kV DC GIS

Requirement	Value
Nominal voltage	±320 kV
Rated voltage	±352 kV
Rated DC withstand voltage	±528 kV
Rated lightning impulse (LI) withstand voltage	≤950 kV
Rated switching impulse (SI) withstand voltage	750 kV
Rated current (DC)	3000 A (4000 A)

- Considering current and future applications that feature DC GIS, energy transmission is planned via HVDC cables in most of the projects.
- With reference to IEC 62895, IEC TS 61936-2 and CIGRE TB 852 the required LI and SI withstand voltages can be limited to the above given values (cable projects).

Feasibility in terms of rated current

- A rated current of 3000 A is required, 4000 A are also considered in the feasibility study
- All values for SF₆ and Clean Air are within the required temperature rise limits of IEC 62271-1, at 0.45 MPa. The maximum temperature drops further with increasing pressure.
- Further, the temperature gradient between conductor and enclosure was considered due to its influence on the electric field distribution at DC voltage.

Electric insulation performance

- · High-voltage tests were conducted.
- The test results and deductions for non-tested conditions confirmed the feasibility.

Voltage type	Value
Rated DC withstand voltage	≥530 kV
Rated LI withstand voltage	950 kV
Rated SI withstand voltage	850 kV
Rated LI withstand voltage, superimposed to DC voltage	950 kV LI + 352 kV DC
Rated SI withstand voltage, superimposed to DC voltage	850 kV SI + 352 kV DC

Gas pressure withstand capability

 The applicability of GIS enclosures and barrier insulators for increased gas pressure (min. functional pressure 0.62 MPa) was proven and confirmed, considering gas pressure coordination (influence of temperature and long-term gas permeation)

Basics: Surface charge accumulation

- Charge accumulation in/at solid insulators under DC depends on the materials involved; comprehensive investigations already performed for SF₆ gas
- To cover potential effects in Clean Air, longer lasting tests at increased voltage were performed in Clean Air (+352 kV for up to 64 hours, ±580 kV for 30 min)
- Further investigations are under consideration

Study Committee B3

Substations and Electrical Installations

Paper ID_11079

Feasibility Tests of a 320 kV Gas-insulated DC Switchgear with Clean Air

continued

Basics: Detectability of protrusions and particles in Clean Air (PD measurement)

- According to CIGRE TB 730, protrusions and particles may be less critical in Clean Air compared to SF₆, considering the relation between partial discharge inception voltage (PDIV) and AC breakdown voltage
- PD measurements (conventional and UHF) were performed with DC voltage to compare the detectability of imperfections in SF₆ (0.45 + 0.55 MPa) and Clean Air (0.65 + 0.75 MPa)

Detectability of protrusions

 No considerable difference between SF₆ and Clean Air, taking the different electric strength under clean condition into account

Detectability of particles

Clean Air @ 0,75 MPa, uncoated enclosure
Clean Air @ 0,65 MPa, uncoated enclosure
SF6 @ 0,55 MPa, uncoated enclosure
SF6 @ 0,45 MPa, uncoated enclosure

- Lift-off voltage not dependent on gas type
- PDIV corresponds to lift-off voltage
- No lift-off with coated enclosure up to ±352 kV

Pulse sequence analysis (PSA)

Test data evaluation with PSA for the firefly case of a 4 mm particle at the HV conductor

• The PSA shows a good match of the patterns for both gas types

http://www.cigre.org