

Study Committee B3

Substations and Electrical Installations

Paper ID - 1082

First F-gas-free and climate-neutral insulated 420 kV GIS busducts installation at TransnetBW

Mark KUSCHEL¹, Laurentiu-Viorel BADICU², Jochen CHRISTIAN², Mario KIEPER1, Kerstin KUNDE¹, Udo PRUCKER³, Jörg RIEDL¹

¹Siemens Energy, ²TransnetBW, ³Trench Germany

Motivation

- Favourable timing to test a new SF₆ alternative, as this pilot project is part of a large infrastructure project (reconstruction of Daxlanden Substation)
- Gaining own experience with an ${\rm SF}_6$ alternative, that contains only atmospheric natural origin gases
- Saving of around 60 % of the entire ${\rm SF}_6$ quantity of this project, by replacing it in the GIBs with a total length of 4000 m

Selection of the SF₆ alternative

- Gas handling: reduced complexity compared to SF₆, without special precautions in normal operation and in the event of an incident
- GWP = 0 (TransnetBW requirement: GWP < 1)
- The selected alternative enables a climate-neutral operation beyond 2050 as well

420 kV F-gas-free GIB technical data

Highest voltage of equipment 420 kV Rated frequency 50 / 60 Hz Rated short time current / Time 63 kA / 3s Rated BIL 1425 kV Rated SIL 1050 kV Power frequency withstand voltage 650 kV 5000 A Rated continuous current 170 kA Rated peak withstand current Ambient temperature -50...+40°C

Conclusion

- The SF₆ saving potential of the GIB is very high. At the same time, the risk failure of such modules is rather low.
- Onsite testing of SF₆-free equipment through pilot projects is necessary in order to gain field experience with the new technologies and their handling.
- The replacement of ${\rm SF}_6$ by gas mixtures of natural gases is safer concerning the future regulation changes.
- TransnetBW will keep on installing and testing SF₆-free equipment based on atmospheric natural gases for GIS and AIS from all prequalified suppliers.

New substation Daxlanden after rebuild

*Only the GIS-C1 is shown as an example. The GIS-C2 is executed identi

Exemplary type tests impressions

http://www.cigre.org

Study Committee B3

Substations and Electrical Installations

Paper ID - 1082

First F-gas-free and climate-neutral insulated 420 kV GIS busducts installation at TransnetBW

Mark KUSCHEL¹, Laurentiu-Viorel BADICU², Jochen CHRISTIAN², Mario KIEPER1, Kerstin KUNDE¹, Udo PRUCKER³, Jörg RIEDL¹

¹Siemens Energy, ²TransnetBW, ³Trench Germany

Clean Air operational experiences

The positive operating experience and increasing installations show that Clean Air is suitable for replacing SF₆ as an insulating gas up to 420 kV.

With Clean Air the same reliability and MTBF can be expected as with ${\rm SF_6}$ equipment. In fact, no major failures have been recorded so far.

Design overview of the 420 kV GIB

To ensure the dielectric performance the dimension and pressure of Clean Air is increased in comparison to SF₆. The related bursting type tests were successfully passed.

Life cycle assessment (LCA)

- With Clean Air the CO₂ footprint is significantly lower, the materials have a marginally influence
- In a CO₂-neutral economy only the gas remains climateimpacting as the needed energy will be generated by renewables without any CO₂ emissions
- Hence, Clean Air enables climate-neutral power grids without CO₂ compensation

Exemplary Clean Air installations

First life tank CB with vacuum interrupter and Clean Air were installed already in 2010. Meanwhile LT, DT, Instrument Transformers and GIS are installed worldwide in all climatic zones.

Clean Air gas handling

Clean Air enables much simpler, safer and faster gas handling!

Vacuum pump for air & clean air Storage and reuse not necessary Clean Air is a commodity with multiple suppliers worldwide Gas quality	Filling from bottles (tool supplied) Storage w/s opecial requirements Handling after arc fault
After filling, only gas humidity (dew point-20°C). Gas mixture remains stable, no gas composition checks Leakage detection	Decomposition O3 & NOx, natural degradation up to a few days. The plant building is ventilated, cleaning with vacuum cleaners (simple personal protection measures)
 After installation with helium similar to factory During service on individual modules with leak spray 	Recycling - No special requirements - Gas is released into the environment after operation (via filter after arc fault)
LCA CO ₂ Footprint according ISO 14040 ¹⁾	

http://www.cigre.org