

Study Committe B4

DC System and power electronics

Paper ID_10584

±180 kV, 300 MW KEPCO BP1 Haenam–Jeju HVDC Scheme Refurbishment – Key Features and Execution Experiences

Byungil AHN*1, Amit KUMAR², Yogesh GUPTA³, Manoj KUMAR³, Fan GUO², Nicolas MOLINIER², David HANSON², Kyoungsoo SONG⁴, Panyoung SUNG¹ ¹ KAPES [Republic of Korea], ² General Electric [United Kingdom], ³ General Electric [India], ⁴ KEPCO [Republic of Korea]

Summary

This paper presents the key features and execution experience of the ± 180 kV, 300 MW Haenam-Jeju HVDC refurbishment project. The Haenam (*Figure-1*) -Jeju (*Figure-2*) HVDC system is owned and operated by Korea Electric Power Corporation (KEPCO) and originally supplied by GEC Alsthom.

Figure-1 Mainland

Figure-2 Island

Key Features

- 101-km-long Bipole submarine cable connection between the Korean Peninsula and the island of Jeju in South Korea (BP1)
- This HVDC system has been in service since the 1990s
- BP1 intend to supply power from mainland of South Korea to island Jeju
- Heavily utilized since the BP1 went into operation
- Major components to be upgraded are converter valves and associated base electronics system
- New network studies to evaluate impact of change in AC network data due to additions of significant renewable generation, mainly wind
- Modifications of control functionalities to coordinate with additional second Bipole link (BP2)
- Updates in control & protection (C&P) to enhance reliability and availability of scheme
- Refurbishment of BP1 link while minimising outage duration for installation, pre-commissioning, and commissioning

Introduction

- A 400 MW HVDC submarine line (BP2) was install in year 2014 to meet increased energy demand on Jeju Island due to increase in tourism
- Control system of BP1 had already exceeded its design life by 7 years so KEPCO decided to upgrade the BP1 at same time (*Table 1*)
- Thyristor valves and its auxiliaries in BP1 also approaching to its maximum design life (*Table 1*)
- For stability reasons of AC Network, replacement scope extended by KEPCO to additional devices

Main equipment	Design life	Excess years
Control systems	15 Year	7 Year
Thyristors valves and its auxiliaries	30 Year	coming in 2024

Table 1 – Design life of main equipment (based on 2017)

Scope of Supply

Following scope of supply was included as part of this refurbishment project:

- Converter valves and associated base electronics system
- Valve cooling system
- Valve protection arresters
- DC measurement devices
- Control and Protection system for AC and DC system
- Auxiliary/back up power supply
- Additional switchgear/bus-works for metallic return operation (MR)

HVDC System Configuration

Figure 3 - Original HVDC system configuration on Jeju Island for Bipole 1 and Bipole 2

http://www.cigre.org

Study Committe B4

DC System and power electronics

Paper ID_10584

±180 kV, 300 MW KEPCO BP1 Haenam–Jeju HVDC Scheme Refurbishment – Key Features and Execution Experiences

Scheme Overview

- Overall single line diagram is shown in Figure 4.
- Two converter stations are connected to 154 kV AC feeders at Haenam and Jeju.
- Originally designed to operate in ground return mode during monopole operation
- Upgraded to metallic return operation during a long-term outage of one pole converter
- A temporary cable link is permanently installed to enable this metallic return upgrade
- The DC connection comprises of two HVDC cables of 101 km, and electrode lines of 15.92 km and 13.39 km at Haenam and Jeju respectively.
- Transfer buses are provided (Figure 4) to allow one HV Cable to be acted as neutral line for either pole.
- Disconnectors on either end of electrode line for isolating it from pole to enable maintenance

DC Circuit Configurations

The scheme can be operated in the following DC Circuit configurations:

- Bipolar (BP) Operation using sea returning via electrode
- Bipolar (BP) Operation using NBGS
- Monopole Ground Return (MGR) Operation with its own conductor (either pole)
- Monopole Metallic Return (MMR) Operation with its own conductor and returned through another pole conductor (either pole)
- Monopole Ground Return (MGR) Operation with faulty converter conductor via transfer bus (either pole)

Main Scheme Parameters

Parameter Description	Haenam	Jeju	Unit
Steady State AC Voltage range	154 ± 10%	154 ± 10%	kVrms
Steady State AC Frequency	60 ± 0.2	60 ± 0.2	Hz
Maximum Short Circuit Current for equipment rating	50	50	kArms
Minimum Short Circuit Level	1500	1300	MVA
Nominal DC Power per pole (Rectifier DC Bus)	154		MW
Nominal DC Voltage per pole (Rectifier DC Bus)	184		kV _{dc}
Nominal DC Current per pole	840		A _{dc}
Maximum Overload for 5 second	1.8pu of DC Current		-
Minimum Steady State Rectifier Firing Angle	15	15	٥
Minimum Steady State Inverter Extinction Angle	19.5	19.5	۰
Converter Transformer Paramet	ers:		
Vector Group (Three phase three winding) Rated Power Rated Valve Winding Voltage Base Impedance (@ Rated) Taps	YN/y0/d11 188.2/94.1/94.1 79.2 0.12 ±14		- MVA kV _{rms} pu %
HVDC Smoothing Reactor	60		mH
Number of thyristors per valve	26	28	
Installed Reactive Power	6 x 27.5	4 x 27.5	MVAr

http://www.cigre.org

Continued

Study Committe B4

DC System and power electronics

Paper ID_10584

±180 kV, 300 MW KEPCO BP1 Haenam–Jeju HVDC Scheme Refurbishment – Key Features and Execution Experiences

Continued

Control Concept

- DC Voltage Control by firing angle regulation for both rectifier and inverter operation
- Tap Changer Control (maintain valve winding voltage within specified range)

Under Steady State:

- Jeju station will control the DC current to maintain constant nominal DC power at the rectifier terminals.
- Haenam station will maintain the DC voltage of the rectifier DC terminals at a target value

Valve Design Description

- Old generation valves are replaced by a recent modernized design of valves
- In latest generation valves, valve module (Figure 5) has 40% less footprint than its predecessor
- Thyristor is a 100 mm, 8.5 kV electrically triggered device
- Direct liquid cooling is used which enable a singlecircuit system with coolant (pure deionized water or water/glycol mix)

Figure 5 – Valve Module

HVDC Control & Protection System

- Frequency control modified enabling coordination with BP2 frequency controller
- For fast constant frequency control, current control is provided at Jeju Island for bidirectional power flow
- Original frequency control was designed with synchronous condenser but new frequency controller is based on deficit power at Island and voltage measurement is at PCC bus.
- Frequency control slope ranging from 0 to 3%
- "Under frequency kicks" have been introduced to enhance the recovery of the island frequency
- Protections are updated to latest algorithms enabling faster fault detection, telecommunications capability between converters
- Cable longitudinal differential protection (CLDP) added to implement cutting edge technology at BP1

Optimization in Erection Time

- Site survey and 3D scanning of existing construction enabled engineers to provide optimized solution
- Significant reduction in civil work by utilizing existing foundation/structure for various apparatus
- Pre-assessment and verification of roof beams to avoid any catastrophe at site during valve replacement
- Utilization of existing busbar wherever validated
- Decommissioning drawings provided at site before commencing new installation
- 3D model coordination to minimize error (Figure 6)

Figure 6 – Old Valve Hall Picture & 3D Model of Refurbished Valve Hall

Challenges

- Commissioning activities were carried out in stages to maintain power flow by either pole of the Bipole
- Minimise the civil work and optimise the erection and commissioning time
- Replacement of the old non-fire-retardant cables with new fire-retardant cables
- Utilization of existing infrastructure, connection and equipment
- Laying of DC Cable which is used as MR in limited space
- Update in control functionalities to make it coordinate with control of ±250 kV, 400 MW KEPCO BP2 Jindo–Jeju and other generators at Jeju Island

Notable Improvements

- New generation valves with smaller footprint and better dielectric distances lead to better performance
- Ground return to Metallic Return monopole operation during long outage capability added
- 3 Shunt reactors are no longer required after scheme refurbishment
- New DC measurement devices to increase accuracy and to enhanced performance of the scheme
- 'Gamma Kick' function developed to avoid commutation failure at inverter due to low SCL considering combined operation of BP1 and BP2